Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2007, 151(2):163-174 | DOI: 10.5507/bp.2007.031
BERRY FRUITS AS A SOURCE OF BIOLOGICALLY ACTIVE COMPOUNDS: THE CASE OF LONICERA CAERULEA
- a Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
- b WALMARK a.s., Oldrichovice 44, 739 61 Trinec
Background: Lonicera caerulea L. (blueberry honeysuckle, Caprifoliaceae) is a traditional crop in northern Russia, China, and Japan. Its fruits are little known as edible berries in North America and Europe. This review deals with the botany and chemical composition of L. caerulea and the biological activity of its main constituents, focusing on the potential health benefits of the berries.
Methods and Results: PubMed, Science Direct and ISI Web of KnowledgeSM databases were used for this paper. Literature sources include the period 1935-2007. L. caerulea berries a are rich source of phenolic compounds such as phenolic acids as well as anthocyanins, proanthocyanidins and other flavonoids, which display potential health promoting effects. Chemopreventive, antimicrobial, anti-adherence and antioxidant benefits, among others are described for these compounds.
Conclusions: The potential of L. caerulea berries to prevent chronic diseases such as diabetes mellitus, cardiovascular diseases and cancer seems to be related above all to their phenolic content.
Keywords: Lonicera caerulea, Berries, Polyphenols, Biological activity
Received: September 7, 2007; Accepted: October 12, 2007; Published: December 1, 2007 Show citation
References
- Huxley A. The New Royal Horticultural Society Dictionary of. Gardening. 1992; 3:790.
- Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000; 48:35973604.
Go to original source...
Go to PubMed... - Hummer KE. Blue honeysuckle: A new berry crop for North America. J. Am. Pomol. Soc. 2006; 60:38.
- Bagchi D, Sen CK, Bagchi M, Atalay M. Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry (Moscow) 2004; 69:75.
Go to original source... - Doll R. An overview of the epidemiologic evidence linking diet and cancer. Proc. Nutr. Soc. 1990; 49:119131.
Go to original source...
Go to PubMed... - Armstrong BK, Mann JI, Adelstein AM, Eskin F. Commodity consumption and ischemic heart-disease mortality, with special reference to dietary practices. J.Chron. Dis. 1975; 28:455469.
Go to original source...
Go to PubMed... - Bingham SA. Mechanisms and experimental and epidemiologic evidence relating dietary fi ber (nonstarch polysaccharides) and starch to protection against large-bowel cancer. Proc. Nutr. Soc. 1990; 49:153171.
Go to original source...
Go to PubMed... - Puupponen-Pimia R, Nohynek L, Meier C, Kahkonen M, Heinonen M, Hopia A, et al. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microb. 2001; 90:494507.
Go to original source...
Go to PubMed... - Middleton E, Kandaswami C. Eff ects of fl avonoids on immune and infl ammatory cell functions. Biochem. Pharmacol. 1992; 43:1167 1179.
Go to original source...
Go to PubMed... - Edenharder R, Vonpetersdorff I, Rauscher R. Antimutagenic eff ects of fl avonoids, chalcones and structurally related-compounds on the activity of 2-amino-3-methylimidazo[4,5-F]quinoline (Iq) and other heterocyclic amine mutagens from cooked food. Mut. Res. 1993; 287:261274.
Go to original source... - Erstad JLF. Annual shoot growth in different populations of Lonicera involucrata collected in North America and grown in Norway. Euphytica 1991; 53:165171.
Go to original source... - Plekhanova MN. Blue Honeysuckle: a new berry from Russia. Pomona 1996; 29:46 48.
- Herman DE, Davidson, C.G. Evaluation of Lonicera taxa for honeysuckle aphid susceptibility, winter hardiness and use. J. Environ. Hort. 1997; 15:177 182.
Go to original source... - Kirtikar KR, Basu, B.D. Indian Medicinal Plants. Delphi 6: Taj Off set Press; 1935.
- Thompson M, Chaovanalikit, A. Preliminary observations on adaptation and nutraceutical values of blue honeysuckle (Lonicera caerulea) in Oregon, USA. Acta Hortic. 2003; 626:6572.
Go to original source... - Bors B. Blue Honeysuckle. [cited 17. 2. 2007]. Available from: http://www.usask.ca/agriculture/plantsci/dom_fruit/articles/blue_ honeysuckle.pdf
- Plekhanova MN. Blue honeysuckle (Lonicera caerulea L.) a new comercial berry crop for temperate climate: genetic resources and breeding. Acta Hortic. 2000; 538:159 164.
Go to original source... - Imanishi HT, Suzuki T, Masuda K, Harada T. Accumulation of raffi nose and stachyose in shoot apices of Lonicera caerulea L. during cold acclimation. Sci. Hort. 1998; 72:255263.
Go to original source... - Goldstein G, Nobel PS. Water relations and low-temperature acclimation for cactus species varying in freezing tolerance. Plant Physiology 1994; 104:675681.
Go to original source... - Shahidi F, Naczk, M. Phenolics in Food and Nutraceuticals. Boca Raton: CRC Press; 2003.
Go to original source... - Svarcova I, Heinrich, J., Bednar, P., Kren, V., Cvak, L., Ulrichova, J., Simanek, V., Valentova, K. Main components and radical scavenging activity of Lonicera caerulea L. var. kamtschatica berries. 50 Years of the Phytochemical Society of Europe. 11. -14. 4. 2007; Cambridge, UK, p. 9495
- Machida K, Asano J, Kikuchi M. Analysis of the components of Lonicera species. 3. Caeruleoside-A and caeruleoside-B, bis-iridoid glucosides from Lonicera caerulea. Phytochemistry 1995; 39:111 114.
Go to original source... - Machida K, Kikuchi M. An iridoid glucoside from Lonicera caeruee. Phytochemistry 1995; 40:603604.
Go to original source... - Ulrichova J, Bednar P, Kren V, Valentova K, Heinrich J, Svarcova I, Svobodova A, Reichenbach R, Cvak L, Simanek V. Characterization of Lonicera caerulea anthocyanines and phenolics by LC-MS2 and assessment of their biological activities. 3rd International Conference on Polyphenols and Health. 25.-28.11. 2007; Kyoto, Japan, p.
- Wang MF, Li JG, Rangarajan M, Shao Y, LaVoie EJ, Huang TC, et al. Antioxidative phenolic compounds from sage (Salvia offi cinalis). J. Agric. Food Chem. 1998; 46:48694873.
Go to original source... - Ono M, Koto M, Komatsu H, Igoshi K, Kobayashi H, Ito Y, et al. Cytotoxic triterpenes and sterol from the fruit of rabbiteye blueberry (Vaccinium ashei). Food Sci. Technol. Res. 2004; 10:5659.
Go to original source... - Jin XH, Ohgami K, Shiratori K, Suzuki Y, Koyama Y, Yoshida K, et al. Eff ects of blue honeysuckle (Lonicera caerulea L.) extract on lipopolysaccharide-induced infl ammation in vitro and in vivo. Exp. Eye Res. 2006; 82:860867.
Go to original source...
Go to PubMed... - Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioeffi cacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005; 81:230S- 242S.
Go to original source...
Go to PubMed... - Karakaya S. Bioavailability of phenolic compounds. Crit. Rev. Food Sci. Nutr. 2004; 44:453464.
Go to original source...
Go to PubMed... - Cotelle N. Role of fl avonoids in oxidative stress. Curr. Top. Med. Chem. 2001; 1:569590.
Go to original source... - McDougall GJ, Dobson P, Smith P, Blake A, Stewart D. Assessing potential bioavailability of rapsberry anthocyanins using an in vitro digestion system. J. Agric. Food Chem. 2005; 53:58965904.
Go to original source... - Gorelik S, Lapidot T, Shaham I, Granit R, Ligumsky M, Kohen R, et al. Lipid peroxidation and coupled vitamin oxidation in simulated and human gastric fl uid inhibited by dietary polyphenols: Health implications. J. Agric. Food Chem. 2005; 53:33973402.
Go to original source...
Go to PubMed... - Paganga G, RiceEvans CA. The identifi cation of fl avonoids as glycosides in human plasma. FEBS Lett. 1997; 401:7882.
Go to original source...
Go to PubMed... - Basu TK, Temple, N.J., Garg, M.L. Antioxidants in human health and disease. Wallingford, UK: CABI Publishing; 1999.
Go to original source... - Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000; 130:2073S2085S.
Go to original source...
Go to PubMed... - Hollman PCH, Devries JHM, Vanleeuwen SD, Mengelers MJB, Katan MB. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr. 1995; 62:12761282.
Go to original source...
Go to PubMed... - Wolff ram S, Block M, Ader P. Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine. J. Nutr. 2002; 132:630635.
Go to original source... - Walgren RA, Karnaky KJ, Lindenmayer GE, Walle T. Effl ux of dietary fl avonoid quercetin 4 '-beta-glucoside across human intestinal Caco-2 cell monolayers by apical multidrug resistance-associated protein-2. J. Pharmacol. Exp. Ther. 2000; 294:830836.
- Walle T, Otake Y, Walle UK, Wilson FA. Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption. J. Nutr. 2000; 130:26582661.
Go to original source...
Go to PubMed... - Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJC, Morgan MRA, et al. Deglycosylation of fl avonoid and isofl avonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett. 1998; 436:7175.
Go to original source...
Go to PubMed... - Day AJ, Canada FJ, Diaz JC, Kroon PA, Mclauchlan R, Faulds CB, et al. Dietary fl avonoid and isofl avone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 2000; 468:166170.
Go to original source...
Go to PubMed... - Chalas J, Claise C, Edeas M, Messaoudi C, Vergnes L, Abella A, et al. Eff ect of ethyl esterifi cation of phenolic acids on low-density lipoprotein oxidation. Biomed. & Pharmacother. 2001; 55:5460.
Go to original source... - Cliff ord MN. Chlorogenic acids and other cinnamates nature, occurrence and dietary burden. J. Sci. Food Agric. 1999; 79:362 372.
Go to original source... - Pietta PG. Flavonoids as antioxidants. J. Nat. Prod. 2000; 63:1035 1042.
Go to original source...
Go to PubMed... - Zadernowski R, Naczk M, Nesterowicz J. Phenolic acid profi les in some small berries. J. Agric. Food Chem. 2005; 53:21182124.
Go to original source...
Go to PubMed... - Chaovanalikit A, Thompson MM, Wrolstad RE. Characterization and quantifi cation of anthocyanins and polyphenolics in blue honeysuckle (Lonicera caerulea L.). J. Agric. Food Chem. 2004; 52:848852.
Go to original source...
Go to PubMed... - Plumb GW, Garcia-Conesa MT, Kroon PA, Rhodes M, Ridley S, Williamson G. Metabolism of chlorogenic acid by human plasma, liver, intestine and gut microfl ora. J. Sci. Food Agric. 1999; 79:390 392.
Go to original source... - Kroon PA, Williamson G. Hydroxycinnamates in plants and food: current and future perspectives. J. Sci. Food Agric. 1999; 79:355 361.
Go to original source... - Olthof MR, Hollman PCH, Katan MB. Chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr. 2001; 131:6671.
Go to original source...
Go to PubMed... - Peppercorn MA, Goldman P. Caff eic acid metabolism by bacteria of human gastrointestinal tract. J. Bacteriol 1971; 108:9961000.
Go to original source... - Gonthier MP, Verny MA, Besson C, Remesy C, Scalbert A. Chlorogenic acid bioavailability largely depends on its metabolism by the gut microfl ora in rats. J. Nutr. 2003; 133:18531859.
Go to original source...
Go to PubMed... - Adam A, Crespy V, Levrat-Verny MA, Leenhardt F, Leuillet M, Demigne C, et al. The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J. Nutr. 2002; 132:19621968.
Go to original source...
Go to PubMed... - Chesson A, Provan GJ, Russell WR, Scobbie L, Richardson AJ, Stewart C. Hydroxycinnamic acids in the digestive tract of livestock and humans. J. Sci. Food Agric. 1999; 79:373378.
Go to original source... - Andreasen MF, Kroon PA, Williamson G, Garcia-Conesa MT. Intestinal release and uptake of phenolic antioxidant diferulic acids. Free Radic. Biol. Med. 2001; 31:304314.
Go to original source...
Go to PubMed... - Ferguson LR, Zhu ST, Harris PJ. Antioxidant and antigenotoxic eff ects of plant cell wall hydroxycinnamic acids in cultured HT-29 cells. Mol. Nutr. & Food Res. 2005; 49:585593.
Go to original source... - Kikugawa K, Hakamada T, Hasunuma M, Kurechi T. Reaction of para-hydroxycinnamic acid-derivatives with nitrite and its relevance to nitrosamine formation. J. Agric. Food Chem. 1983; 31:780 785.
Go to original source... - RiceEvans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of fl avonoids and phenolic acids. Free Rad. Biol. Med. 1996; 20:933956.
Go to original source... - Vaidyanathan JB, Walle T. Cellular uptake and effl ux of the tea fl avonoid (-)-epicatechin-3-gallate in the human intestinal cell line Caco-2. J. Pharmacol. Exp. Ther. 2003; 307:745752.
Go to original source... - Tsyrlov IB, Mikhailenko VM, Gelboin HV. Isozyme-specifi c and species-specifi c susceptibility of cDNA-expressed CYP1A P-450s to diff erent fl avonoids. BBA Prot. Struct. Mol. Enzymol. 1994; 1205:325335.
Go to original source... - Otake Y, Hsieh F, Walle T. Glucuronidation versus oxidation of the fl avonoid galangin by human liver microsomes and hepatocytes. Drug Metabol. Dispos. 2002; 30:576581.
Go to original source...
Go to PubMed... - Boutin JA, Meunier F, Lambert PH, Hennig P, Bertin D, Serkiz B, et al. In-vivo and in-vitro glucuronidation of the fl avonoid diosmetin in rats. DMD 1993; 21:11571166.
- Vaidyanathan JB, Walle T. Glucuronidation and sulfation of the tea fl avonoid (-)-epicatechin by the human and rat enzymes. Drug Metabol. Dispos. 2002; 30:897903.
Go to original source...
Go to PubMed... - Zhu BT, Ezell EL, Liehr JG. Catechol-O-methyltransferase-catalyzed rapid O-methylation of mutagenic fl avonoids Metabolic inactivation as a possible reason for their lack of carcinogenicity in vivo. J. Biol. Chem. 1994; 269:292299.
Go to original source... - Rechner AR, Kuhnle G, Bremner P, Hubbard GP, Moore KP, Rice- Evans CA. The metabolic fate of dietary polyphenols in humans. Free Rad. Biol. Med. 2002; 33:220235.
Go to original source... - Walle T, Walle UK, Halushka PV. Carbon dioxide is the major metabolite of quercetin in humans. J. Nutr. 2001; 131:26482652.
Go to original source...
Go to PubMed... - Galati G, Moridani MY, Chan TS, OBrien PJ. Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: Glutathione oxidation and conjugation. Free Rad. Bio. Med. 2001; 30:370382.
Go to original source...
Go to PubMed... - Walle T, Vincent TS, Walle UK. Evidence of covalent binding of the dietary fl avonoid quercetin to DNA and protein in human intestinal and hepatic cells. Biochem. Pharmacol. 2003; 65:16031610.
Go to original source...
Go to PubMed... - Harris DM, Besselink E, Henning SM, Go VLW, Heber D. Phytoestrogens induce diff erential estrogen receptor alpha- or betamediated responses in transfected breast cancer cells. Exp. Biol. Med. 2005; 230:558568.
Go to original source... - Sesink ALA, OLeary KA, Hollman PCH. Quercetin gluouronides but not glucosides are present in human plasma after consumption of quercetin-3-glucoside or quercetin-4'-glucoside. J. Nutr. 2001; 131:19381941.
Go to original source...
Go to PubMed... - Bourne LC, Rice-Evans CA. Urinary detection of hydroxycinnamates and fl avonoids in humans after high dietary intake of fruit. Free Rad. Res. 1998; 28:429438.
Go to original source...
Go to PubMed... - Olthof MR, Hollman PCH, Vree TB, Katan MB. Bioavailabilities of quercetin-3-glucoside and quercetin-4 '-glucoside do not diff er in humans. J. Nutr. 2000; 130:12001203.
Go to original source...
Go to PubMed... - Ferry DR, Smith A, Malkhandi J, Fyfe DW, deTakats PG, Anderson D, et al. Phase I clinical trial of the fl avonoid quercetin: Pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin. Cancer Res. 1996; 2:659668.
- Ueno I, Nakano N, Hirono I. Metabolic-fate of [C-14] quercetin in the Acl rat. Jpn. J. Exp. Med. 1983; 53:4150.
- Fang J, Xia C, Cao ZX, Zheng JZ, Reed E, Jiang BH. Apigenin inhibits VEGF and HIF-1 expression via P13K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J. 2005; 19:342353.
Go to original source... - Schroeter H, Heiss C, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, et al. (-)-Epicatechin mediates benefi cial eff ects of fl avanol-rich cocoa on vascular function in humans. PNAS 2006; 103:10241029.
Go to original source... - Katiyar S, Elmets CA, Katiyar SK. Green tea and skin cancer: photoimmunology, angiogenesis and DNA repair. J. Nutr. Biochem. 2007; 18:287296.
Go to original source...
Go to PubMed... - Manach C, Texier O, Morand C, Crespy V, Regerat F, Demigne C, et al. Comparison of the bioavailability of quercetin and catechin in rats. Free Rad. Biol. Med. 1999; 27:12591266.
Go to original source...
Go to PubMed... - Cliff ord MN. Anthocyanins nature, occurrence and dietary burden. J. Sci. Food Agric. 2000; 80:10631072.
Go to original source... - Kowalczyk E, Krzesinski P, Kura M, Szmigiel B, Blaszczyk J. Anthocyanins in medicine. Pol. J. Pharmacol. 2003; 55:699702.
- Lea AGH. HPLC in Food Analysis. London: Academic Press; 1988.
- McGhie TK, Walton MC. The bioavailability and absorption of anthocyanins: towards a better understanding. Mol Nutr Food Res 2007; 51:70213.
Go to original source...
Go to PubMed... - Cao GH, Muccitelli HU, Sanchez-Moreno C, Prior RL. Anthocyanins are absorbed in glycated forms in elderly women: a pharmacokinetic study. AJCN 2001; 73:920926.
Go to original source...
Go to PubMed... - Wu XL, Cao GH, Prior RL. Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. J. Nutr. 2002; 132:18651871.
Go to original source... - Perez-Vicente A, Gil-Izquierdo A, Garcia-Viguera C. In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. J. Agric. Food Chem. 2002; 50:23082312.
Go to original source...
Go to PubMed... - Milbury PE, Cao GH, Prior RL, Blumberg J. Bioavailablility of elderberry anthocyanins. Mech. Ageing Dev. 2002; 123:9971006.
Go to original source...
Go to PubMed... - Howell AB. Cranberry proanthocyanidins and the maintenance of urinary tract health. Crit. Rev. Food Sci. Nutr. 2002; 42:273278.
Go to original source...
Go to PubMed... - Ali BH, Mousa HM, El-Mougy S. The eff ect of a water extract and anthocyanins of Hibiscus sabdariff a L. on paracetamol-induced hepatoxicity in rats. Phytother. Res. 2003; 17:5659.
Go to original source...
Go to PubMed... - Rechner AR, Kuhnle G, Hu HL, Roedig-Penman A, van den Braak MH, Moore KP, et al. The metabolism of dietary polyphenols and the relevance to circulating levels of conjugated metabolites. Free Rad. Res. 2002; 36:12291241.
Go to original source...
Go to PubMed... - Seeram NP, Nair MG. Inhibition of lipid peroxidation and structure- activity-related studies of the dietary constituents anthocyanins, anthocyanidins, and catechins. J. Agric. Food Chem. 2002; 50:53085312.
Go to original source... - Valentova K, Stejskal D, Bednar P, Vostalova J, Cihalik C, Vecerova R, et al. Biosafety, antioxidant status, and metabolites in urine after consumption of dried cranberry juice in healthy women: A pilot double-blind placebo-controlled trial. J. Agric. Food Chem. 2007; 55:32173224.
Go to original source... - Amico V, Napoli EM, Renda A, Ruberto G, Spatafora C, Tringali C. Constituents of grape pomace from the Sicilian cultivar 'Nerello Mascalese. Food Chem. 2004; 88:599607.
Go to original source... - Macheix J, Fleuriet, A., Billot, J. Fruit phenolics. Boca Raton: CRC Press; 1990.
- Wang H, Cao GH, Prior RL. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 1997; 45:304309.
Go to original source... - Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K. Alpha-glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J. Agric. Food Chem. 2001; 49:19481951.
Go to original source... - Umoren J, Kies C. Commercial soybean starch blocker consumption Impact on weight-gain and on copper, lead and zinc status of rats. Plant Food. Hum. Nutr. 1992; 42:135142.
Go to original source...
Go to PubMed... - Block TM, Lu XY, Platt FM, Foster GR, Gerlich WH, Blumberg BS, et al. Secretion of human hepatitis-B virus is inhibited by the imino sugar N-butyldeoxynojirimycin. PNAS 1994; 91:22352239.
Go to original source... - Martin S, Giannone G, Andriantsitohaina R, Martinez MC. Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis. Br. J. Pharmacol. 2003; 139:10951102.
Go to original source...
Go to PubMed... - Hamdy MK, Pratt DE, Powers JJ, Somaatmadja D. Anthocyanins. 3. Disc sensitivity assay of Inhibition of bacterial growth by pelargonidin 3-monoglucoside and its degradation products. J. Food Sci. 1961; 26:457-&.
Go to original source...
Go to PubMed... - Kwon JY, Lee KW, Hur HJ, Lee HJ. Peonidin inhibits phorbol-ester- induced COX-2 expression and transformation in JB6 P+ cells by blocking phosphorylation of ERK-1 and -2. Sig. Transduction Pathways, Pt C 2007; 1095:513520.
Go to original source...
Go to PubMed... - Neto CC, Krueger CG, Lamoureaux TL, Kondo M, Vaisberg AJ, Hurta RAR, et al. MALDI-TOF MS characterization of proanthocyanidins from cranberry fruit (Vaccinium macrocarpon) that inhibit tumor cell growth and matrix metalloproteinase expression in vitro. J. Sci. Food Agric. 2006; 86:1825.
Go to original source... - Howell AB. Bioactive compounds in cranberries and their role in prevention of urinary tract infections. Mol Nutr Food Res 2007; 51:7327.
Go to original source...
Go to PubMed... - Foo LY, Lu YR, Howell AB, Vorsa N. A-type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic P-fi mbriated Escherichia coli. J. Nat. Prod. 2000; 63:12251228.
Go to original source...
Go to PubMed... - Ferreira D, Marais JP, Slade D. Phytochemistry of the mopane, Colophospermum mopane. Phytochemistry 2003; 64:3151.
Go to original source...
Go to PubMed... - de Colmenares NG, Ramirez-Martinez JR, Aldana JO, Ramos- Nino ME, Cliff ord MN, Pekerar S, et al. Isolation, characterisation and determination of biological activity of coff ee proanthocyanidins. J. Sci. Food Agric. 1998; 77:368372.
Go to original source... - Puupponen-Pimia R, Nohynek L, Hartmann-Schmidlin S, Kahkonen M, Heinonen M, Maatta-Riihinen K, et al. Berry phenolics selectively inhibit the growth of intestinal pathogens. J. Appl. Microb. 2005; 98:9911000.
Go to original source...
Go to PubMed... - Puupponen-Pimia R, Nohynek L, Alakomi HL, Oksman-Caldentey KM. Bioactive berry compounds novel tools against human pathogens. Appl. Microb. Biotechnol. 2005; 67:818.
Go to original source...
Go to PubMed... - Aviram M, Fuhrman B. Wine fl avonoids protect against LDL oxidation and atherosclerosis. Ann. N. Y. Acad. Sci. 2002; 957:146 161.
Go to original source...
Go to PubMed... - Ruel G, Couillard C. Evidences of the cardioprotective potential of fruits: the case of cranberries. Mol Nutr Food Res 2007; 51:692701.
Go to original source...
Go to PubMed... - Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 2007; 51:675 83.
Go to original source...
Go to PubMed... - Heinonen M. Antioxidant activity and antimicrobial eff ect of berry phenolics--a Finnish perspective. Mol Nutr Food Res 2007; 51:68491.
Go to original source...
Go to PubMed... - Kim YC, Chung, S.K. Reactive oxygen radical species scavenging eff ects of Korean medicinal plant leaves. Food Sci. Biotechnol. 2002; 11:407411.
- Neto CC. Cranberry and its phytochemicals: A review of in vitro anticancer studies. J. Nutr. 2007; 137:186S-193S.
Go to original source...
Go to PubMed... - Reed J. Cranberry fl avonoids, atherosclerosis and cardiovascular health. Crit. Rev. Food Sci. Nutr. 2002; 42:301316.
Go to original source...
Go to PubMed... - Tsuda T, Horio F, Osawa T. Cyanidin 3-O-beta-D-glucoside suppresses nitric oxide production during a zymosan treatment in rats. J. Nutr. Sci. Vitaminology 2002; 48:305310.
Go to original source...
Go to PubMed... - Duthie SJ. Berry phytochemicals, genomic stability and cancer: evidence for chemoprotection at several stages in the carcinogenic process. Mol. Nutr. Food Res. 2007; 51:66574.
Go to original source...
Go to PubMed... - Duthie SJ, Jenkinson AM, Crozier A, Mullen W, Pirie L, Kyle J, et al. The eff ects of cranberry juice consumption on antioxidant status and biomarkers relating to heart disease and cancer in healthy human volunteers. Eur. J. Nutr. 2006; 45:113122.
Go to original source...
Go to PubMed... - Neto CC. Cranberry and blueberry: evidence for protective eff ects against cancer and vascular diseases. Mol Nutr Food Res 2007; 51: 65264
Go to original source...
Go to PubMed... - Svarcova I, Valentova, K., Ulrichova, J., Simanek, V. Antioxidant activity of phenolic fraction from Lonicera caerulea L. var. kamtschatica berries. XXIV. Xenobiochemicke sympozium. 22.-24.5. 2007; Liptovsky Jan, p. 76
- Duthie SJ. Berry phytochemicals, genomic stability and cancer: Evidence for chemoprotection at several stages in the carcinogenic process. Mol. Nutr. Food Res. 2007; 51:665674.
Go to original source...
Go to PubMed... - Ahn D, Putt D, Kresty L, Stoner GD, Fromm D, Hollenberg PF. The eff ects of dietary ellagic acid on rat hepatic and esophageal mucosal cytochromes P450 and phase II enzymes. Carcinogenesis 1996; 17:821828.
Go to original source...
Go to PubMed... - Carlton PS, Kresty LA, Siglin JC, Morse MA, Lu J, Morgan C, et al. Inhibition of N-nitrosomethylbenzylamine-induced tumorigenesis in the rat esophagus by dietary freeze-dried strawberries. Carcinogenesis 2001; 22:441446.
Go to original source...
Go to PubMed... - Lee LT, Huang YT, Hwang JJ, Lee PPH, Ke FC, Nair MP, et al. Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells. Anticancer Res. 2002; 22:16151627.
- Choi JA, Kim JY, Lee JY, Kang CM, Kwon HJ, Yoo YD, et al. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int. J. Oncology 2001; 19:837844.
Go to original source...
Go to PubMed... - Ranelletti FO, Maggiano N, Serra FG, Ricci R, Larocca LM, Lanza P, et al. Quercetin inhibits p21-ras expression in human colon cancer cell lines and in primary colorectal tumors. Int. J. Cancer 2000; 85:438445.
Go to original source...
Go to PubMed... - Morrow DMP, Fitzsimmons PEE, Chopra M, McGlynn H. Dietary supplementation with the anti-tumour promoter quercetin: its eff ects on matrix metalloproteinase gene regulation. Mutat. Res. Fund. Mol. Mech. Mut. 2001; 480:269276.
Go to original source... - Chen PN, Chu SC, Chiou HL, Kuo WH, Chiang CL, Hsieh YS. Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3- glucoside, exhibited an inhibitory eff ect on the migration and invasion of a human lung cancer cell line. Cancer Lett. 2006; 235:248259.
Go to original source...
Go to PubMed... - Serraino I, Dugo L, Dugo P, Mondello L, Mazzon E, Dugo G, et al. Protective eff ects of cyanidin-3-O-glucoside from blackberry extract against peroxynitrite-induced endothelial dysfunction and vascular failure. Life Sci. 2003; 73:10971114.
Go to original source...
Go to PubMed... - Cooke D, Steward WP, Gescher AJ, Marczylo T. Anthocyans from fruits and vegetables Does bright colour signal cancer chemopreventive activity? Eur. J. Cancer 2005; 41:19311940.
Go to original source...
Go to PubMed... - Schmidt BM, Erdman JW, Lila MA. Diff erential eff ects of blueberry proanthocyanidins on androgen sensitive and insensitive human prostate cancer cell lines. Cancer Lett. 2006; 231:240246.
Go to original source...
Go to PubMed... - Roy S, Khanna S, Alessio HM, Vider J, Bagchi D, Bagchi M, et al. Anti-angiogenic property of edible berries. Free Rad. Res. 2002; 36:10231031.
Go to original source...
Go to PubMed... - Broadhurst CL, Polansky MM, Anderson RA. Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. J. Agric. Food Chem. 2000; 48:849852.
Go to original source...
Go to PubMed... - McDougall GJ, Dobson P, Smith P, Blake A, Stewart D. Assessing potential bioavallability of raspberry anthocyanins using an in vitro digestion system. Journal of Agricultural and Food Chemistry 2005; 53:58965904.
Go to original source...
Go to PubMed... - McDougall GJ, Stewart D. The inhibitory eff ects of berry polyphenols on digestive enzymes. BioFactors 2005; 23:189195.
Go to original source...
Go to PubMed... - Jayaprakasam B, Vareed SK, Olson LK, Nair MG. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J. Agric. Food Chem. 2005; 53:2831.
Go to original source...
Go to PubMed... - Yawadio R, Tanimori S, Morita N. Identifi cation of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities. Food Chem. 2007; 101:16161625.
Go to original source...
Go to PubMed... - Adisakwattana S, Ngamrojanavanich N, Kalampakorn K, Tiravanit W, Roengsumran S, Yibchok-Anun S. Inhibitory activity of cyanidin- 3-rutinoside on alpha-glucosidase. J. Enzym. Inhib. Med. Chem. 2004; 19:313316.
Go to original source...
Go to PubMed... - Camire ME. Billberries and blueberries as functional foods and nutraceuticals. Herbs, Botanicals and Teas. Lancaster: Technomic Publishing Company; 2000.
- Bickford PC, Gould T, Briederick L, Chadman K, Pollock A, Young D, et al. Antioxidant-rich diets improve cerebellar physiology and motor learning in aged rats. Brain Res. 2000; 866:211 217.
Go to original source...
Go to PubMed...




