Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020, 164(1):77-83 | DOI: 10.5507/bp.2019.018

Elevated serum concentrations of IGF-1 and IGF-1R in patients with thyroid cancers

Hanna Lawnickaa, Ewelina Motylewskaa, Magdalena Borkowskab, Krzysztof Kuzdakb, Agnieszka Siejkac, Jacek Swietoslawskid, Henryk Stepiena, Tomasz Stepienb
a Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
b Clinic of Endocrinological and General Surgery, Chair of Endocrinology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland
c Clinic of Endocrinology, Chair of Endocrinology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
d Department of Neuroendocrinology, Interdepartmental Chair of Laboratory and Molecular Diagnostics, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland

Background: The rising incidence of thyroid cancer observed in the last few decades requires an improvement in diagnostic tools and management techniques for patients with thyroid nodules.

Aims: The aim of this study was to assess serum concentrations of IGF-1 and IGF-1R in patients diagnosed with thyroid cancers.

Methods: 36 patients diagnosed with papillary thyroid cancer (PTC), 11 subjects with follicular thyroid cancer (FTC), 9 patients with anaplastic thyroid cancer (ATC) and 19 subjects with multinodular nontoxic goiter (MNG) were enrolled to the study. The control group (CG) consisted of 20 healthy volunteers. Blood samples were collected one day before surgery. Serum IGF-1 and IGF-1R concentrations were measured using specific ELISA methods.

Results: Significantly higher concentrations of IGF-1 were found in patients with PTC as compared with controls but not that obtained from subjects diagnosed with MNG. The concentration of IGF-1R was significantly elevated in subjects with PTC and ATC as compared with healthy volunteers. Similarly, patients diagnosed with PTC or ATC presented significantly higher serum concentration of IGF-1R in comparison to the MNG group.

Conclusions: Our results show that the IGF-1 - IGF-1R axis plays a significant role in the development of PTC and ATC and imply that serum concentrations of both cytokines may be considered as additional markers for the differentiation of malignancies during the preoperative diagnosis of patients with thyroid gland tumors. These results indicate that IGF-1R serum concentrations allow us to differentiate between MNG and PTC or ATC. Moreover IGF-1R serum values appear to be better predictor of PTC and ATC than IGF-1 concentrations.

Keywords: thyroid cancer, IGF-1, IGF-1R

Received: November 14, 2018; Revised: April 12, 2019; Accepted: April 12, 2019; Prepublished online: May 23, 2019; Published: March 26, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Lawnicka, H., Motylewska, E., Borkowska, M., Kuzdak, K., Siejka, A., Swietoslawski, J., Stepien, H., & Stepien, T. (2020). Elevated serum concentrations of IGF-1 and IGF-1R in patients with thyroid cancers. Biomedical papers164(1), 77-83. doi: 10.5507/bp.2019.018
Download citation

References

  1. Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol 2013; 2013:965212. doi: 10.1155/2013/965212 Go to original source... Go to PubMed...
  2. Sanabria A, Kowalski LP, Shah JP, Nixon IJ, Angelos P, Williams MD, Rinaldo A, Ferlito A. Growing incidence of thyroid carcinoma in recent years: Factors underlying overdiagnosis. Head Neck 2018;40(4):855-66. doi: 10.1002/hed.25029 Go to original source... Go to PubMed...
  3. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JWW, Comber H, Forman D, Bray F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur J Cancer 2013;49(6):1374-403. doi: 10.1016/j.ejca.2012.12.027 Go to original source... Go to PubMed...
  4. National Cancer Institute Surveilance, Epidemiology, and End Results Program. Available from: https://seer.cancer.gov/statfacts/html/thyro.html (accessed on 25 April 2017).
  5. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014;74(11):2913-21. doi: 10.1158/0008-5472.CAN-14-0155 Go to original source... Go to PubMed...
  6. Rusinek D, Chmielik E, Krajewska J, Jarzab M, Oczko-Wojciechowska M, Czarniecka A, Jarzab B. Current Advances in Thyroid Cancer Management. Are We Ready for the Epidemic Rise of Diagnoses? Int J Mol Sci 2017;18(8):pii: E1817. doi: 10.3390/ijms18081817 Go to original source... Go to PubMed...
  7. Omur O, Baran Y. An update on molecular biology of thyroid cancers. Crit Rev Oncol Hematol 2014,90(3):233-52. doi: 10.1016/j.critrevonc.2013.12.007 Go to original source... Go to PubMed...
  8. Glikson E, Alon E, Bedrin L, Talmi YP. Prognostic Factors in Differentiated Thyroid Cancer Revisited. Isr Med Assoc J 2017;19(2):114-8. Go to PubMed...
  9. Gong W, Yang S, Yang X, Guo F. Blood preoperative neutrophil-to-lymphocyte ratio is correlated with TNM stage in patients with papillary thyroid cancer. Clinics (Sao Paulo) 2016;71(6):311-4. doi: 10.6061/clinics/2016(06)04 Go to original source... Go to PubMed...
  10. Karatzas T, Vasileiadis I., Zapanti E, Charitoudis G, Karakostas E, Boutzios G. Thyroglobulin antibodies as a potential predictive marker of papillary thyroid carcinoma in patients with indeterminate cytology. Am J Surg 2016;212(5):946-52. doi: 10.1016/j.amjsurg.2015.12.030 Go to original source... Go to PubMed...
  11. Stępień T, Brożyna M, Kuzdak K, Motylewska E, Komorowski J, Stępień H., Ławnicka H. Elevated Concentrations of SERPINE2/Protease Nexin-1 and Secretory Leukocyte Protease Inhibitor in the Serum of Patients with Papillary Thyroid Cancer. Dis Markers 2017; 2017:4962137. doi: 10.1155/2017/4962137 Go to original source... Go to PubMed...
  12. Zhang Y, Xu D, Pan J, Yang Z, Chen M, Han J, Zhang S, Sun L, Qiao H. Dynamic monitoring of circulating microRNAs as a predictive biomarker for the diagnosis and recurrence of papillary thyroid carcinoma. Oncol Lett 2017;13(6):4252-66. doi: 10.3892/ol.2017.6028 Go to original source... Go to PubMed...
  13. Kim HJ, Mok JO, Kim CH, Kim YJ, Kim SJ, Park HK, Byun DW, Suh K, Yoo MH. Preoperative serum thyroglobulin and changes in serum thyroglobulin during TSH suppression independently predict follicular thyroid carcinoma in thyroid nodules with a cytological diagnosis of follicular lesion. Endocr Res 2017;42(2):154-62 doi: 10.1080/07435800.2016.1262395 Go to original source... Go to PubMed...
  14. Brahmkhatri VP, Prasanna C, Atreya HS. Insulin-like growth factor system in cancer: novel targeted therapies. Biomed Res Int 2015;2015:538019. Go to original source... Go to PubMed...
  15. Kasprzak A, Kwasniewski W, Adamek A, Gozdzicka-Jozefiak A. Insulin-like growth factor (IGF) axis in cancerogenesis. Mutat Res Rev Mutat Res 2017;772:78-104. doi: 10.1016/j.mrrev.2016.08.007 Go to original source... Go to PubMed...
  16. Belfiore A, Pandini G, Vella V, Squatrito S, Vigneri R. Insulin/IGF-I hybrid receptors play a major role in IGF-I signaling in thyroid cancer. Biochimie 1999;81(4):403-7. Go to original source... Go to PubMed...
  17. Vella V, Sciacca L, Pandini G, Mineo R, Squatrito S, Vigneri R, Belfiore A. The IGF system in thyroid cancer: new concepts. Mol Pathol 2001; 4(3):121-4. Go to original source... Go to PubMed...
  18. Hoang JK, Langer JE, Middleton WD, Wu CC, Hammers LW, Cronan JJ, Tessler FN, Grant EG, Berland LL. Managing incidental thyroid nodules detected on imaging: White paper of the ACR Incidental Thyroid Findings Committee. J Am Coll Radiol 2015;12:143-50. doi: 10.1016/j.jacr.2014.09.038 Go to original source... Go to PubMed...
  19. Cansu GB, Yilmaz N, Toru S, Sari R, Gökhan Ocak G, Arici C, Altunbaş HA, Balci MK. Evaluation of Incidental Thyroid Nodules in Cancer Patients. J Natl Med Assoc 2017;109(4):299-306. doi: 10.1016/j.jnma.2017.02.011 Go to original source... Go to PubMed...
  20. Ciampolillo A, De Tullio C, Perlino E, Maiorano E. The IGF-I axis in thyroid carcinoma. Curr Pharm Des 2007;13(7):729-35. Go to original source... Go to PubMed...
  21. Maiorano E, Ciampolillo A, Viale G, Maisonneuve P, Ambrosi A, Triggiani V, Marra E, Perlino E. Insulin-like growth factor 1 expression in thyroid tumors. Appl Immunohistochem Mol Morphol 2000;8(2):110-9. Go to original source... Go to PubMed...
  22. Ciampolillo A, De Tullio C, Giorgino F. The IGF-I/IGF-I receptor pathway: Implications in the Pathophysiology of Thyroid Cancer. Curr Med Chem 2005;12(24):2881-91. Go to original source... Go to PubMed...
  23. Gydee H, O'Neill JT, Patel A, Bauer AJ, Tuttle RM, Francis GL. Differentiated thyroid carcinomas from children and adolescents express IGF-I and the IGF-I receptor (IGF-I-R). Cancers with the most intense IGF-I-R expression may be more aggressive. Pediatr Res 2004; 55(4):709-15. Go to original source... Go to PubMed...
  24. Baştürk E, Kement M, Yavuzer D, Vural S, Gezen C, Gözü HI, Karadayi A, Oncel M. The role of insulin-like growth factor 1 in the development of benign and malignant thyroid nodules. Balkan Med J 2012; 29(2):133-8. doi: 10.5152/balkanmedj.2011.034 Go to original source... Go to PubMed...
  25. Liu YJ, Qiang W, Shi J, Lv SQ, Ji M, Shi BY. Expression and significance of IGF-1 and IGF-1R in thyroid nodules. Endocrine 2013;44(1):158-64. doi: 10.1007/s12020-012-9864-z Go to original source... Go to PubMed...
  26. Chakravarty G, Santillan AA, Galer C, Adams HP, El-Naggar AK, Jasser SA, Mohsin S, Mondal D, Clayman GL, Myers JN. Phosphorylated insulin like growth factor-I receptor expression and its clinico-pathological significance in histologic subtypes of human thyroid cancer. Exp Biol Med (Maywood) 2009;234(4):372-86. doi: 10.3181/0809-RM-284 Go to original source... Go to PubMed...
  27. Miyakawa M, Tsushima T, Murakami H, Wakai K, Isozaki O, Takano K. Increased expression of phosphorylated p70S6 kinase and Akt in papillary thyroid cancer tissues. Endocr J 2003;50(1):77-83. Go to original source... Go to PubMed...
  28. Wang Z, Chakravarty G, Kim S, Yazici YD, Younes MN, Jasser SA, Santillan AA, Bucana CD, El-Naggar AK, Myers JN. Growth-inhibitory effects of human anti-insulin-like growth factor-I receptor antibody (A12) in an orthotopic nude mouse model of anaplastic thyroid carcinoma. Clin Cancer Res 2006;12(15):4755-65. Go to original source... Go to PubMed...
  29. Schmidt JA, Allen NE, Almquist M, Franceschi S, Rinaldi S, Tipper SJ, Tsilidis KK, Weiderpass E, Overvad K, Tjønneland A, Boutron-Ruault MC, Dossus L, Mesrine S, Kaaks R, Lukanova A, Boeing H, Lagiou P, Trichopoulos D, Trichopoulou A, Palli D, Krogh V, Panico S, Tumino R, Zanetti R, Bueno-de-Mesquita HB, Peeters PH, Lund E, Menéndez V, Agudo A, Sánchez MJ, Chirlaque MD, Ardanaz E, Larrañaga N, Hennings J, Sandström M, Khaw KT, Wareham N, Romieu I, Gunter MJ, Riboli E, Key TJ, Travis RC. Insulin-like growth factor-i and risk of differentiated thyroid carcinoma in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev 2014;23(6):976-85. doi: 10.1158/1055-9965.EPI-13-1210-T Go to original source... Go to PubMed...
  30. Kim HK, Lee JS, Park MH, Cho JS, Yoon JH, Kim SJ, Kang HC. Tumorigenesis of papillary thyroid cancer is not BRAF-dependent in patients with acromegaly. PLoS One 2014; 9(10):e110241. doi: 10.1371/journal.pone.0110241 Go to original source... Go to PubMed...
  31. Gullu BE, Celik O, Gazioglu N, Kadioglu P. Thyroid cancer is the most common cancer associated with acromegaly. Pituitary 2010;13(3):242-8. doi: 10.1007/s11102-010-0224-9 Go to original source... Go to PubMed...
  32. Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev 2001;22(5):631-56. Go to original source... Go to PubMed...
  33. Motylewska E, Stępień T, Borkowska M, Kuzdak K, Siejka A, Komorowski J, Stępień H, Ławnicka H. Alteration in the serum concentrations of FGF19, FGFR4 and βKlotho in patients with thyroid cancer. Cytokine 2018;105:32-6. doi: 10.1016/j.cyto.2018.02.013 Go to original source... Go to PubMed...
  34. Zhou X, Wang X. Klotho. A novel biomarker for cancer. J Cancer Res Clin Oncol 2015;141:961-9. doi: 10.1007/s00432-014-1788-y Go to original source... Go to PubMed...
  35. Xiangxiang Z, Xiaosheng F, Yujie J, Lingyun G, Xinyu L, Ying L, Kang L, Peipei L, Xiao L, Xin W. Klotho. An anti-aging gene, acts as a tumor suppressor and inhibitor of IGF-1R signaling in diffuse large B cell lymphoma. J Hematol Oncol 2017;10(1):37. doi: 10.1186/s13045-017-0391-5 Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.