Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2019, 163(2):122-131 | DOI: 10.5507/bp.2019.010

Nanodrugs used in cancer therapy

Katerina Kopeckovaa, Tomas Eckschlagerb, Jakub Sircc, Radka Hobzovac, Johana Plchb, Jan Hrabetab, Jiri Michalekc
a Department of Oncology, 2 nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
b Department of Pediatric Hematology and Oncology, 2 nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
c Institute of Macromolecular Chemistry, Academy of Sciences of Czech Republic

Cancer despite the introduction of new targeted therapy remains for many patients a fatal disease. Nanotechnology in cancer medicine has emerged as a promising approach to defeat cancer. Targeted delivery of anti-cancer drugs by different nanosystems promises enhanced drug efficacy, selectivity, better safety profile and reduced systemic toxicity. The article presents an overview of recent developments in cancer nanomedicine. We focus on approved anti-cancer medical products and on the results of clinical studies, highlighting that liposomal and micellar cytostatics or albumin-based nanoparticles have less side effects and are more efficient than "free" drugs. In addition, we discuss results of in vitro and in vivo preclinical studies with lipid, inorganic and polymer nanosystems loaded by anticancer drugs which according to our meaning are important for development of new nanodrugs. Pharmacokinetic characteristics of nanodrugs are discussed and characterization of major nanotechnology systems used for cancer nanomedicine is presented.

Keywords: cancer, nanomedicine, nanotechnology, nanodrugs, targeted therapy

Received: July 6, 2018; Accepted: March 25, 2019; Prepublished online: April 9, 2019; Published: June 25, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kopeckova, K., Eckschlager, T., Sirc, J., Hobzova, R., Plch, J., Hrabeta, J., & Michalek, J. (2019). Nanodrugs used in cancer therapy. Biomedical papers163(2), 122-131. doi: 10.5507/bp.2019.010
Download citation

References

  1. Hanahan D, Weinberg RA. Hallmarks of Cancer: the next generation. Cell 2011;144:646-74. Go to original source... Go to PubMed...
  2. Yang W, Peters JI, Wiliams RO. Inhaled nanoparticles- a current review. Int J Pharm 2008;356:239-47. Go to original source... Go to PubMed...
  3. Lammers T, Hennink WE, Storm G. Tumour-targeted nanomedicines: principles and practice. Br J Cancer 2008;99:392-7. Go to original source... Go to PubMed...
  4. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 2008;3:133-49. Go to original source... Go to PubMed...
  5. Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv Drug Deliv Rev 2017;108:25-38. Go to original source... Go to PubMed...
  6. Jatzkewitz H. Ein Kolloidales Blutplasma-Ersatzmittel (Polly-vinylpyrrolidon) Gebundenes Peptamin (Glycyl-L-leucyl-Mezcalin) Als Neuartige Depotform Fur Biologisch Aktive Primare Amine (Mezcalin). Zeitschrift Fur Naturforschung Part B- Chemie Biochemie Biophysik Biologie Und Verwandten Gebiete 1955;10:27-31. Go to original source...
  7. Aslan B, Ozpolat B, Sood AK, Lopez-Berestein G. Nanotechnology in cancer therapy. J Drug Target 2013;21:904-13. Go to original source... Go to PubMed...
  8. Krukiewicz K, Zak JK, Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects, Mater Sci Eng C 2016;62:927-42. Go to original source... Go to PubMed...
  9. Perry J, Chambers A, Spithoff K, Laperriere N. Gliadel wafers in the treatment of malignant glioma: a systematic review. Curr Oncol 2007;14:189-94. Go to original source... Go to PubMed...
  10. Roger E, Lagarce F, Garcion E, Benoit JP. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine 2010;5:287-306. Go to original source... Go to PubMed...
  11. Ai J, Biazar E, Jafarpour M, Montazeri M, Majdi A, Aminifard S, Zafran M, Akbari HR, Rad HG. Nanotoxicology and nanoparticle safety in biomedical design. Int J Nanomedicine 2011;6:1117-27. Go to original source...
  12. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006;6:688-701. Go to original source... Go to PubMed...
  13. Vega-Vila KR, Takemoto JK,Yánez JA, Remsberg CM, Forrest ML,Davies NM. Clinical toxicities of nanocarrier systems. Adv Drug Deliv Rev 2008;60:929-38. Go to original source... Go to PubMed...
  14. Rihova B, Kubackova K. Clinical Implication of N-(2-hydroxypropyl)methacrylamide copolymers. Curr Pharm Biotechnol 2003;4:311-22. Go to original source... Go to PubMed...
  15. Schmidt MM, Wittrup KD. A modeling analysis of the effects of molecular size and binding affinity on tumour targeting. Mol Cancer Ther 2009;8:2961-871. Go to original source...
  16. Huynh E, Zheng G. Cancer nanomedicine: addressing the dark side of the enhanced permeability and retention effect. Nanomedicine 2015;10:1993-5. Go to original source... Go to PubMed...
  17. Yokoi K, Tanei T, Godin B, van de Ven AL, Hanibuchi M, Matsunoki A, Alexander J, Ferrari M.. Serum biomarkers for personalization of nanotherapeutics-based therapy in different tumor and organ microenviroments. Cancer Lett 2014;345:48-55. Go to original source... Go to PubMed...
  18. Piktel E, Niemirowicz K, W±tek M, Wollny T, Deptu³a P, Bucki R. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. J Nanobiotechnology 2016;14:39. Go to original source... Go to PubMed...
  19. Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 2012;7:779-86. Go to original source... Go to PubMed...
  20. Bolkestein M, de Blois E, Koelewijn SJ, Eggermont AM, Grosveld F, de Jong M, Koning GA. Investigation of Factors Determining the Enhanced Permeability and Retention Effect in Subcutaneous Xenografts. J Nucl Med 2016;57:601-7. Go to original source... Go to PubMed...
  21. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011;6:715-28. Go to original source... Go to PubMed...
  22. Hu CM, Zhang L, Aryal S, Cheung C, Fang RH,Zhang L. Erytrocyte membrane-carmouflaged polymeric nanoparticles as a biomemetic delivery. Proc Natl Acad Sci 2011;108:10980-5. Go to original source... Go to PubMed...
  23. Singh S, Sharma A, Robertson GP. Realizing the Clinical Potential of Cancer Nanotechnology by Minimizing Toxicologic and Targeted Delivery Concerns. Cancer Res 2012;72:5563-8. Go to original source... Go to PubMed...
  24. Onoue S, Yamada A, Cha HK. Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine 2014;9:1025-37. Go to original source... Go to PubMed...
  25. Gmeiner WH, Ghosh S. Nanotechnology for cancer treatment. Nanotechnol Rev 2014;3:111-22. Go to original source... Go to PubMed...
  26. Martins S, Sarmento B, Ferreira DC, Souto EB. Lipid- based collodial carriers for peptide and protein delivery- liposomes versus lipid nanoparticles. Int J Nanomedicine 2007;2:595-607.
  27. Shahbazi MA, Santos HA. Improving oral absorption via drug-loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication. Curr Drug Metab 2013;14:28-56. Go to original source... Go to PubMed...
  28. Thomas N, Holm R, Mullertz A, Rades T. In vitro and in vivo performanceof novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J Control Release 2012;160:25-32. Go to original source... Go to PubMed...
  29. Shahbazi MA, Santos HA. Improving oral absorption via drug-loaded nanocarriers: absoption mechanism, intestinal models and rational fabrication. Cur Drug Met 2013;14:28-56. Go to original source... Go to PubMed...
  30. Onoue S, Sato H, Ogawa K, Kojo Y, Aoki Y, Kawabata Y,Wada K,Mizumoto T, Yamada S. Inhalable dry-emulsion formulation of cyclosporin A eith improved anti-inflammatory effects in experimental asthma/COPD-model rats. Eur J Biopharm 2012;80:54-60. Go to original source... Go to PubMed...
  31. Devalapally H, Chakilam A, Amji MM. Role of nanotechnology in pharmaceutical product development. J Pharm Sci 2007;96:2547-65. Go to original source... Go to PubMed...
  32. Honda A, Asai T, Oku N, ArakiY, Tanaka M,Ebihara N. Liposomes and nanotechnology in drug development: focus on ocular targets. Int J Nanomedicine 2013;8:495-503. Go to original source... Go to PubMed...
  33. Zhang L, Gu FX, Chan JM, Wang AZ, Lang RS, Farokhzad OC. Nanoparticles in medicine:therapeutic applications and developments. Clin Pharmacol Ther 2008;83:761-9. Go to original source... Go to PubMed...
  34. Barenholz Y. Doxil ® - The first FDA-approved nano-drug: Lessons learned. J Control Release 2012;160:117-34. Go to original source... Go to PubMed...
  35. Batist G, Ramakrishnan G, Rao CS, Chandrasekharan A, Gutheil J, Guthrie T, Shah P, Khojasteh A, Nair MK, Hoelzer K, Tkaczuk K, Park YC, Lee LW. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol 2001;19:1444-54. Go to original source... Go to PubMed...
  36. O'Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, Catane R, Kieback DG, Tomczak P, Ackland SP, Orlandi F, Mellars L, Alland L, Tendler C; CAELYX Breast Cancer Study Group. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 2004;15:440-9. Go to original source... Go to PubMed...
  37. Jehn CF, Hemmati P, Lehenbauer-Dehm S, Kümmel S, Flath B, Schmid P. Biweekly Pegylated Liposomal Doxorubicin (Caelyx) in Heavily Pretreated Metastatic Breast Cancer: A Phase 2 Study. Clin Breast Cancer 2016;16:514-9. Go to original source... Go to PubMed...
  38. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 2004;56:185-229. Go to original source... Go to PubMed...
  39. Glantz MJ1, LaFollette S, Jaeckle KA, Shapiro W, Swinnen L, Rozental JR, Phuphanich S, Rogers LR, Gutheil JC, Batchelor T, Lyter D, Chamberlain M, Maria BL, Schiffer C, Bashir R, Thomas D, Cowens W, Howell SB. Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J Clin Oncol 1999;17:3110-6.
  40. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/ medicines/004125/human med_002022.jsp∣=WC0b01ac058001d124. [cited 2018 Jul 6]
  41. Onoue S, Yamada S, Chan HK. Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine 2014;9:1025-37. Go to original source... Go to PubMed...
  42. Li QW, Cai TG, Huang YH, Xia X, Cole SPC, Cai Y. A Review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials 2017;7(6):pii:E122. doi: 10.3390/nano7060122 Go to original source... Go to PubMed...
  43. Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 2007;59:491-504. Go to original source... Go to PubMed...
  44. Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017;12:7291-309. Go to original source... Go to PubMed...
  45. Ho BN, Pfeffer CM, Singh ATK. Update on Nanotechnology-based Drug Delivery Systems in Cancer Treatment. Anticancer Res 2017;37:5975-81 Go to original source...
  46. Ji Z, Lin G, Lu Q, Meng L, Shen X, Dong L, Fu C, Zhang X. Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J Colloid Interface Sci 2012;365:143-9. Go to original source... Go to PubMed...
  47. Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, Vile RG, Stewart JS. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 2001;7:243-54.
  48. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm 2010;385:113-42. Go to original source... Go to PubMed...
  49. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep 2012;64:1020-37. Go to original source... Go to PubMed...
  50. https://www.cancer.gov/about-cancer/treatment/drugs/fda-nanoparticle-paclitaxel [cited 2018 Jul 6]
  51. Dostalova S, Vasickova K, Hynek D, Krizkova S1, Richtera L, Vaculovicova M, Eckschlager T, Stiborova M, Heger Z, Adam V. Apoferritin as an ubiquitous nanocarrier with excellent shelf life. Int J Nanomedicine 2017;12:2265-78. Go to original source... Go to PubMed...
  52. Dostalova S, Polanska H, Svobodova M, Balvan J, Krystofova O, Haddad Y, Krizkova S, Masarik M, Eckschlager T, Stiborova M, Heger Z, Adam V.Prostate-Specific Membrane Antigen-Targeted Site-Directed Antibody-Conjugated Apoferritin Nanovehicle Favorably Influences In Vivo Side Effects of Doxorubicin. Sci Rep 2018;8:8867. Go to original source... Go to PubMed...
  53. Trotta F, Dianzani C,Caldera F, Mognetti B, Cavalli R. The application of nanosponges to cancer drug delivery. Expert Opin Drug Deliv 2014;11:931-41. Go to original source... Go to PubMed...
  54. Mognetti B, Barberis A, Marino S, Berta G, Francia SD, Trotta F. In vitro enhancement of anticancer activity of paclitaxel by a cremophor free cyclodextrin based nanosponge formulation. J Incl Phenom Macrocycl Chem 2012;74:201-10. Go to original source...
  55. Kim BYS, Rutka JT, Chan WCW. Nanomedicine NEJM 2010;363:2434-43. Go to original source... Go to PubMed...
  56. Lee CC, Gillies ER, Fox ME, Guillaudeu SJ, Frechet JMJ, Dy EE, Szoka FC. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci U S A 2006;103:16649-54. Go to original source... Go to PubMed...
  57. Drbohlavova J, Chomoucka J, Adam V, Ryvolova M, Eckschlager T, Hubalek J, Kizek R. Nanocarriers for anticancer drugs--new trends in nanomedicine. Curr Drug Metab 2013;14:547-64. Go to original source... Go to PubMed...
  58. Hanafy NAN, El-Kemary M, Leporatti S. Micelles Structure Development as a Strategy to Improve Smart Cancer Therapy. Cancers (Basel) 2018;10:pii:E238. Go to original source... Go to PubMed...
  59. Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, Kim NK, Bang YJ. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res 2004;10:3708-16. Go to original source... Go to PubMed...
  60. Aberoumandi SM, Mohammadhosseini M, Abasi E, Saghati S, Nikzamir N, Akbarzadeh A, Panahi Y, Davaran S. An update on application of nanostructured drug delivery systems in cancer therapy: a review. Artif Cell Nanomed Biotechnol 2017;45:1058-68. Go to original source... Go to PubMed...
  61. Hrib J, Sirc J, Hobzova R, Hampejsova Z, Bosakova Z, Munzarova M, Michalek J. Nanofibers for drug delivery - incorporation and release of model molecules, influence of molecular weight and polymer structure. Beilstein J Nanotechnol 2015;6:1939-45. Go to original source... Go to PubMed...
  62. Lu T, Jing X, Song X, Wang X. Doxorubicin-Loaded Ultrafine PEG-PLA Fiber Mats Against Hepatocarcinoma. J Appl Polym Sci 2012;123:209-17. Go to original source...
  63. Xu X, Chen X, Wang Z, Jing X. Ultrafine PEG-PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity. Eur J Pharm Biopharm 2009;72:18-25. Go to original source... Go to PubMed...
  64. Wei J, Hu J, Li M, Chen Y, Chen Y. Multiple drug-loaded electrospun PLGA/gelatin composite nanofibers encapsulated with mesoporous ZnO nanospheres for potential postsurgical cancer treatment. RSC Advances 2014;4:28011-19. Go to original source...
  65. Gharpure KM, Wu SY, Li C, Lopez-Berestein G, Sood AK. Nanotechnology: Future of Oncotherapy. Clin Cancer Res 2015;21:3121-30. Go to original source... Go to PubMed...
  66. Tormo M, Tari AM, McDonnell TJ, Cabanillas F, Garcia-Conde J, Lopez-Berestein G. Apoptotic induction in transformed follicular lymphoma cells by Bcl-2 downregulation. Leuk Lymphoma 1998;30:367-79. Go to original source... Go to PubMed...
  67. Plch J, Venclikova K, Janouskova O, Hrabeta J, Eckschlager T, Kopeckova K, Hampejsova Z, Bosakova Z, Sirc J, Hobzova R. Paclitaxel-Loaded Polylactide/Polyethylene Glycol Fibers with Long-Term Antitumor Activity as a Potential Drug Carrier for Local Chemotherapy. Macromol Biosci 2018;18(6):e1800011 Go to original source... Go to PubMed...
  68. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 2016;17:20-37. Go to original source... Go to PubMed...
  69. Kaplan JA, Liu R, Freedman JD, Padera R, Schwartz J, Colson YL, Grinstaff MW. Prevention of lung cancer recurrence using cisplatin-loaded superhydrophobic nanofiber meshes. Biomaterials 2016;76:273-81. Go to original source... Go to PubMed...
  70. Ding QX, Li Z, Yang Y, Guo G, Luo F, Chen ZQ, Yang Y, Qian ZY, Shi S. Preparation and therapeutic application of docetaxel-loaded poly(D,L-lactide) nanofibers in preventing breast cancer recurrence. Drug Deliv 2016;23:2677-85. Go to original source... Go to PubMed...
  71. Ma Y, Wang X, Zong S, Zhang Z, Xie Z, Huang Y, Yue Y, Liu S, Jing X. Local, combination chemotherapy in prevention of cervical cancer recurrence after surgery by using nanofibers co-loaded with cisplatin and curcumin. RSC Advances 2015;5:106325-32. Go to original source...
  72. Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci 2014;1:13-25. Go to original source...
  73. Cerna T, Stiborova M, Adam V, Kizek R, Eckschlager T. Nanocarrier drugs in the treatment of brain tumors J Cancer Metastasis Treat 2016;2:407-16. Go to original source...
  74. Dawidczyk CM, Russell LM, Searson PC. Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments, Front Chem 2014;2:69. Go to original source... Go to PubMed...
  75. Kopel P, Blazkova I, Vaculovicova M, Adam V, Eckschlager T, Stiborova M, Kizek R. Characterization of Carbon Nanotubes for Doxorubicin Encapsulation. In: CRC Concise Encyclopedia of Nanotechnology, pp. 186-195.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.