Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2019, 163(2):114-121 | DOI: 10.5507/bp.2019.003

Invertebrate and vertebrate models in aging research

Manoj Kumar Chaudhary, Syed Ibrahim Rizvi
Department of Biochemistry, University of Allahabad, Allahabad-211002, India

Therapeutic interventions that can delay age associated diseases and ensure a longer health-span is a major goal of aging research. Consequent to understanding that aging is a modifiable trait, a large number of studies are currently being undertaken to elucidate the mechanism(s) of the aging process. Research on human aging and longevity is difficult, due to longer time frame, ethical concerns and environmental variables. Most of the present day understanding about the aging process comes through studies conducted on model organisms. These provide suitable platforms for understanding underlying mechanism(s) which control aging and have led to major discoveries that emphasize the evolutionarily conserved molecular pathways as key players that respond to extra and intracellular signals. This is a review of various invertebrate and vertebrate models including yeast, Drosophila, C. elegans, rodents, naked mole rat, and birds, currently used in aging research with emphasis on how well they can mimic aging in higher animals and humans.

Keywords: aging, longevity, model organisms

Received: July 2, 2018; Accepted: February 6, 2019; Prepublished online: March 5, 2019; Published: June 25, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kumar Chaudhary, M., & Rizvi, S.I. (2019). Invertebrate and vertebrate models in aging research. Biomedical papers163(2), 114-121. doi: 10.5507/bp.2019.003
Download citation

References

  1. Swartz A. James Fries. Healthy Aging Pioneer. Am J Public Health 2008;98(7):1163-6. Go to original source... Go to PubMed...
  2. Carvalhal Marques F, Volovik Y, Cohen E. The Roles of Cellular and Organismal Aging in the Development of Late-Onset Maladies. Annu Rev Pathol 2015;10:1-23. Go to original source... Go to PubMed...
  3. Harman D. Free Radical Theory of Aging: An Update: Increasing the Functional Life Span. Ann N Y Acad Sci 2006;1067:10-21. Go to original source... Go to PubMed...
  4. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The Hallmarks of Aging. Cell 2013;153(6):1194-217. Go to original source... Go to PubMed...
  5. Von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci 2002;27(7):339-44. Go to original source... Go to PubMed...
  6. Goldsmith TC. The evolution of aging: how new theories will change the future of medicine.3rd ed. Crownsville, Azinet Press; 2014.
  7. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R. Caloric Restriction Delays Disease Onset and Mortality in Rhesus Monkeys. Science 2009;325(5937):201-4. Go to original source... Go to PubMed...
  8. Schaible R, Scheuerlein A, Dańko MJ, Gampe J, Martínez DE, Vaupel JW. Constant Mortality and Fertility Over Age in Hydra. Proc Natl Acad Sci 2015;112(51):15701-6. Go to original source... Go to PubMed...
  9. Klapper W, Kühne K, Singh KK, Heidorn K, Parwaresch R, Krupp G. Longevity of lobsters is linked to ubiquitous telomerase expression. FEBS Lett 1998;439(1-2):143-6. Go to original source... Go to PubMed...
  10. Karathia H, Vilaprinyo E, Sorribas A, Alves R. Saccharomyces cerevisiae as a Model Organism: A Comparative Study. PLoS ONE. 2011;6(2):e16015. Go to original source... Go to PubMed...
  11. Gershon H, Gershon D. The budding yeast, Saccharomyces cerevisiae, as a Model for Aging Research: a critical review. Mech Ageing Dev 2000;120(1-3):1-22. Go to original source... Go to PubMed...
  12. Laurent JM, Young JH, Kachroo AH, Marcotte EM. Efforts to make and apply humanized yeast. Brief Funct Genomics 2016;15(2):155-63. Go to original source... Go to PubMed...
  13. Mortimer RK, Johnston JR. Life Span of Individual Yeast Cells. Nature 1959;183(4677):1751-2. Go to original source... Go to PubMed...
  14. Mirisola MG, Braun RJ, Petranovic D. Approaches to study yeast cell aging and death. FEMS Yeast Res 2014;14(1):109-18. Go to original source... Go to PubMed...
  15. Longo VD, Fabrizio P. Chronological aging in Saccharomyces cerevisiae. Subcell Biochem 2012;57:101-21. Go to original source... Go to PubMed...
  16. Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000;289(5487):2126-8. Go to original source... Go to PubMed...
  17. Lin S-J, Kaeberlein M, Andalis AA, Sturtz LA, Defossez P-A, Culotta VC, Fink GR, Guarente L. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 2002;418(6895):344-8. Go to original source... Go to PubMed...
  18. Powers RW. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 2006;20(2):174-84. Go to original source... Go to PubMed...
  19. Kaeberlein M. Regulation of Yeast Replicative Life Span by TOR and Sch9 in Response to Nutrients. Science. 2005;310(5751):1193-6. Go to original source... Go to PubMed...
  20. Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW-L, Thomas EL, Kockel L. With TOR, Less Is More: A Key Role for the Conserved Nutrient-Sensing TOR Pathway in Aging. Cell Metab 2010;11(6):453-65. Go to original source... Go to PubMed...
  21. Fabrizio P, Pletcher SD, Minois N, Vaupel JW, Longo VD. Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett 2004;557(1-3):136-42. Go to original source... Go to PubMed...
  22. Longo VD. The Ras and Sch9 pathways regulate stress resistance and longevity. Exp Gerontol 2003;38(7):807-11. Go to original source... Go to PubMed...
  23. Roosen J, Engelen K, Marchal K, Mathys J, Griffioen G, Cameroni E, Thevelein JM, De Virgilio C, De Moor B, Winderickx J. PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability: cAMP-gating in yeast. Mol Microbiol 2004;55(3):862-80. Go to original source... Go to PubMed...
  24. Tenreiro S, Outeiro TF. Simple is good: yeast models of neurodegeneration: Yeast as a model for neurodegeneration. FEMS Yeast Res 2010;10(8):970-9. Go to original source... Go to PubMed...
  25. Botstein D, Fink GR. Yeast: An Experimental Organism for 21st Century Biology. Genetics 2011;189(3):695-704. Go to original source... Go to PubMed...
  26. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408(6809):239-47. Go to original source... Go to PubMed...
  27. Herrero E, Ros J, Bellí G, Cabiscol E. Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 2008;1780(11):1217-35. Go to original source... Go to PubMed...
  28. Hofer S, Kainz K, Zimmermann A, Bauer MA, Pendl T, Poglitsch M, Madeo F, Carmona-Gutierrez D. Studying Huntington's Disease in Yeast: From Mechanisms to Pharmacological Approaches. Front Mol Neurosc 2018;11:318. Go to original source... Go to PubMed...
  29. Morgan TH. Sex limited inheritance in drosophila. Science. 1910;32(812):120-2. Go to original source... Go to PubMed...
  30. Reiter LT. A Systematic Analysis of Human Disease-Associated Gene Sequences In Drosophila melanogaster. Genome Res 2001;11(6):1114-25. Go to original source... Go to PubMed...
  31. Adams MD. The Genome Sequence of Drosophila melanogaster. Science 2000;287(5461):2185-95. Go to original source... Go to PubMed...
  32. Matthews KA, Kaufman TC, Gelbart WM. Research resources for Drosophila: the expanding universe. Nat Rev Genet 2005;6(3):179-93. Go to original source... Go to PubMed...
  33. Bernards A, Hariharan IK. Of flies and men--studying human disease in Drosophila. Curr Opin Genet Dev. 2001;11(3):274-8. Go to original source... Go to PubMed...
  34. Tower J, Arbeitman M. The genetics of gender and life span. J. Biology 2009;8(4):38. Go to original source... Go to PubMed...
  35. Musselman LP, Fink JL, Ramachandran PV, Patterson BW, Okunade AL, Maier E, Brent MR, Turk J, Baranski TJ. Role of Fat Body Lipogenesis in Protection against the Effects of Caloric Overload in Drosophila. J. Biol. Chem 2013;288(12):8028-42. Go to original source... Go to PubMed...
  36. Waskar M, Li Y, Tower J. Stem cell aging in the Drosophila ovary. AGE 2005;27(3):201-12. Go to original source... Go to PubMed...
  37. He Y, Jasper H. Studying aging in Drosophila. Methods 2014;68(1):129-33. Go to original source... Go to PubMed...
  38. Clancy DJ. Extension of Life-Span by Loss of CHICO, a Drosophila Insulin Receptor Substrate Protein. Science 2001;292(5514):104-6. Go to original source... Go to PubMed...
  39. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L. Mechanisms of Life Span Extension by Rapamycin in the Fruit Fly Drosophila melanogaster. Cell Metab 2010;11(1):35-46. Go to original source... Go to PubMed...
  40. Fiorino A, Thompson D, Yadlapalli S, Jiang C, Shafer OT, Reddy P, Meyhofer E. Parallelized, real-time, metabolic-rate measurements from individual Drosophila. Sci Rep 2018;8(1)14452. Go to original source... Go to PubMed...
  41. De Nobrega AK, Lyons LC. Aging and the clock: Perspective from flies to humans. Eur J Neurosci 2018 Oct 30. [Epub ahead of print] doi: 10.1111/ejn.14176 Go to original source... Go to PubMed...
  42. Orr W, Sohal R. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 1994;263(5150):1128-30. Go to original source... Go to PubMed...
  43. Kubiak M, Tinsley MC. Sex-Specific Routes To Immune Senescence In Drosophila melanogaster. Sci Rep. 2017;7(1):10417. doi: 10.1038/s41598-017-11021-6 Go to original source... Go to PubMed...
  44. Felix TM, Hughes KA, Stone EA, Drnevich JM, Leips J. Age-Specific Variation in Immune Response in Drosophila melanogaster Has a Genetic Basis. Genetics 2012;191(3):989-1002. Go to original source... Go to PubMed...
  45. Klass M, Hirsh D. Non-ageing developmental variant of Caenorhabditis elegans. Nature 1976;260(5551):523-5. Go to original source... Go to PubMed...
  46. Morris JZ, Tissenbaum HA, Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 1996;382(6591):536-9. Go to original source... Go to PubMed...
  47. C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 1998;282(5396):2012-8. Go to original source... Go to PubMed...
  48. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003;421(6920):231-7. Go to original source... Go to PubMed...
  49. Lee SS, Lee RYN, Fraser AG, Kamath RS, Ahringer J, Ruvkun G. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet. 2003;33(1):40-8. Go to original source... Go to PubMed...
  50. Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, Sakano Y, Paupard MC, Hall DH, Driscoll M. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 2002;419(6909):808-14. Go to original source... Go to PubMed...
  51. Adachi H, Fujiwara Y, Ishii N. Effects of oxygen on protein carbonyl and aging in Caenorhabditis elegans mutants with long (age-1) and short (mev-1) life spans. J Gerontol A Biol Sci Med Sci 1998;53(4):B240-4. Go to original source... Go to PubMed...
  52. Fielenbach N, Antebi A. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev 2008;22(16):2149-65. Go to original source... Go to PubMed...
  53. Collins JJ, Huang C, Hughes S, Kornfeld K. The measurement and analysis of age-related changes in Caenorhabditis elegans. WormBook 2008;1-21.
  54. Altintas O, Park S, Lee S-JV. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep 2016;49(2):81-92. Go to original source... Go to PubMed...
  55. Zheng J, Greenway FL. Caenorhabditis elegans as a model for obesity research. Int J Obes (Lond) 2012;36(2):186-94. Go to original source... Go to PubMed...
  56. Lapierre LR, Hansen M. Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol Metab 2012;23(12):637-44. Go to original source... Go to PubMed...
  57. Lee D, Jeong D-E, Son HG, Yamaoka Y, Kim H, Seo K, Khan AA, Roh T-Y, Moon DW, Lee Y, Lee S-JV. SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat. Genes Dev 2015;29(23):2490-503. Go to original source... Go to PubMed...
  58. Dutta S, Sengupta P. Men and mice: Relating their ages. Life Sci 2016;152:244-8. Go to original source... Go to PubMed...
  59. Sengupta P. The Laboratory Rat: Relating Its Age With Human's. Int J Prev Med 2013;4(6):624-30.
  60. Vanhooren V, Libert C. The mouse as a model organism in aging research: Usefulness, pitfalls and possibilities. Ageing Res Rev 2013;12(1):8-21. Go to original source... Go to PubMed...
  61. Mestas J, Hughes CCW. Of Mice and Not Men: Differences between Mouse and Human Immunology. J Immunol 2004;172(5):2731-8. Go to original source... Go to PubMed...
  62. Demetrius L. Of mice and men. EMBO Rep 2005;6(Suppl 1):S39-S44. Go to original source... Go to PubMed...
  63. Hasty P, Vijg J. Accelerating aging by mouse reverse genetics: a rational approach to understanding longevity. Aging Cell 2004;3(2):55-65. Go to original source... Go to PubMed...
  64. Mitchell SJ, Scheibye-Knudsen M, Longo DL, De Cabo R. Animal Models of Aging Research: Implications for Human Aging and Age-Related Diseases. Annu Rev Anim Biosci. 2015;3(1):283-303. Go to original source... Go to PubMed...
  65. Bogue MA, Peters LL, Paigen B, Korstanje R, Yuan R, Ackert-Bicknell C, Grubb SC, Churchill GA, Chesler EJ. Accessing Data Resources in the Mouse Phenome Database for Genetic Analysis of Murine Life Span and Health Span. J Gerontol A Biol Sci Med Sci 2016;71(2):170-7. Go to original source... Go to PubMed...
  66. Eppig JT, Richardson JE, Kadin JA, Ringwald M, Blake JA, Bult CJ. Mouse Genome Informatics (MGI): reflecting on 25 years. Mamm Genome 2015;26(7-8):272-84. Go to original source... Go to PubMed...
  67. Tremblay M-È, Zettel ML, Ison JR, Allen PD, Majewska AK. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 2012;60(4):541-58. Go to original source... Go to PubMed...
  68. Ward JM. Lymphomas and leukemias in mice. Exp Toxicol Pathol 2006;57(5-6):377-81. Go to original source... Go to PubMed...
  69. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009;460(7253):392-5. Go to original source... Go to PubMed...
  70. Folgueras AR, Freitas-Rodríguez S, Velasco G, López-Otín C. Mouse Models to Disentangle the Hallmarks of Human Aging. Circ Res 2018;123(7):905-24. Go to original source... Go to PubMed...
  71. Cox LS, Mattison JA. Increasing longevity through caloric restriction or rapamycin feeding in mammals: common mechanisms for common outcomes? Aging Cell 2009;8(5):607-13. Go to original source... Go to PubMed...
  72. Williams K, Roman J. Studying human respiratory disease in animals - role of induced and naturally occurring models: Modelling respiratory disease in animals. J Pathol 2016;238(2):220-32. Go to original source... Go to PubMed...
  73. Gong B, Levine S, Barnum SR, Pasinetti GM. Role of complement systems in IVIG mediated attenuation of cognitive deterioration in Alzheimer's disease. Curr Alzheimer Res 2014;11(7):637-44. Go to original source... Go to PubMed...
  74. Kudlow BA, Kennedy BK, Monnat RJ. Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases.Nat Rev Mol Cell Biol 2007;8(5):394-404. Go to original source... Go to PubMed...
  75. Lewis KN, Buffenstein R. The Naked Mole-Rat. eLife 2018;7:e31157. Go to PubMed...
  76. Edrey YH, Hanes M, Pinto M, Mele J, Buffenstein R. Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research. ILAR J 2011;52(1):41-53. Go to original source... Go to PubMed...
  77. Sherman PW, Jennifer U M Jarvis, Richard D. Alexander, editors. The Biology of the Naked Mole-Rat. New Jersey: Princeton University Press;1991.
  78. Buffenstein R. The Naked Mole-Rat: A New Long-Living Model for Human Aging Research. J Gerontol A Biol Sci Med Sci 2005;60(11):1369-77. Go to original source... Go to PubMed...
  79. Buffenstein R. Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J Comp Physiol B 2008;178(4):439-45. Go to original source... Go to PubMed...
  80. Nathaniel TI, Saras A, Umesiri FE, Olajuyigbe F. Tolerance to oxygen nutrient deprivation in the hippocampal slices of the naked mole rats. J Integr Neurosci 2009;8(2):123-36. Go to original source... Go to PubMed...
  81. Frappell PB, Mortola JP. Hamsters vs. rats: metabolic and ventilatory response to development in chronic hypoxia. J Appl Physiol 1994;77(6):2748-52. Go to original source... Go to PubMed...
  82. Buffenstein R, Woodley R, Thomadakis C, Daly TJM, Gray DA. Cold-induced changes in thyroid function in a poikilothermic mammal, the naked mole-rat. Am J Physiol Regul Integr Comp Physiol 2001;280(1):R149-55. Go to original source... Go to PubMed...
  83. Andziak B, Buffenstein R. Disparate patterns of age-related changes in lipid peroxidation in long-lived naked mole-rats and shorter-lived mice. Aging Cell 2006;5(6):525-32. Go to original source... Go to PubMed...
  84. Brunet Rossinni AK. Testing the Free Radical Theory of Aging in Bats. Ann N Y Acad Sci 2004;1019:506-8. Go to original source... Go to PubMed...
  85. Perez-Campo R, López-Torres M, Cadenas S, Rojas C, Barja G. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J Comp Physiol B 1998;168(3):149-58. Go to original source... Go to PubMed...
  86. Hulbert AJ, Faulks SC, Buffenstein R. Oxidation-Resistant Membrane Phospholipids Can Explain Longevity Differences Among the Longest-Living Rodents and Similarly-Sized Mice. J Gerontol A Biol Sci Med Sci 2006;61(10):1009-18. Go to original source... Go to PubMed...
  87. Perez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, Mele J, Andziak B, Yang T, Edrey Y, Friguet B, Ward W, Richardson A, Chaudhuri A. Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci U S A 2009;106(9):3059-64. Go to original source... Go to PubMed...
  88. Kramer B, Buffenstein R. The pancreas of the naked mole-rat (Heterocephalus glaber): an ultrastructural and immunocytochemical study of the endocrine component of thermoneutral and cold acclimated animals. Gen Comp Endocrinol 2004;139(3):206-14. Go to original source... Go to PubMed...
  89. Buffenstein R, Yahav S. The effect of diet on microfaunal population and function in the caecum of a subterranean naked mole-rat, Heterocephalus glaber. Br J Nutr 1991;65(2):249-58. Go to original source... Go to PubMed...
  90. Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, Marino SM, Sun X, Turanov AA, Yang P, Yim SH, Zhao X, Kasaikina MV, Stoletzki N, Peng C, Polak P, Xiong Z, Kiezun A, Zhu Y, Chen Y, Kryukov GV, Zhang Q, Peshkin L, Yang L, Bronson RT, Buffenstein R, Wang B, Han C, Li Q, Chen L, Zhao W, Sunyaev SR, Park TJ, Zhang G, Wang J, Gladyshev VN. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 2011;479(7372):223-7. Go to original source... Go to PubMed...
  91. Calder WA. Size, function, and life history. Mineola, New York: Dover Publications; 1996.
  92. Austad, Steven N. 2011. "Candidate bird species for use in aging research." ILAR journal 52 (1):89-96. Go to original source... Go to PubMed...
  93. Brouwer K, Jones ML, King CE, Schifter H. Longevity records for Psittaciformes in captivity. International Zoo Yearbook 2000;37(1):299-316. Go to original source...
  94. Holmes D., Ottinger M. Birds as long-lived animal models for the study of aging. Exp Gerontol 2003;38(11-12):1365-75. Go to original source... Go to PubMed...
  95. Gosden RG. Cheating time: science, sex, and aging. New York: W.H. Freeman; 1996.
  96. Harrison GJ, Harrison LR. Clinical avian medicine and surgery: incl. aviculture. Philadelphia;1986.
  97. Furness LJ, Speakman JR. Energetics and longevity in birds. Age 2008;30(2-3):75-87. Go to original source... Go to PubMed...
  98. Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, Kunz TH, Buffenstein R, Brand MD. Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 2007;6(5):607-18. Go to original source... Go to PubMed...
  99. Barja G, Cadenas S, Rojas C, Pérez-Campo R, López-Torres M. Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds. Free Radic Res 1994;21(5):317-27. Go to original source... Go to PubMed...
  100. Ogburn CE, Carlberg K, Ottinger MA, Holmes DJ, Martin GM, Austad SN. Exceptional Cellular Resistance to Oxidative Damage in Long-Lived Birds Requires Active Gene Expression. J Gerontol A Biol Sci Med Sci 2001;56(11):B468-74. Go to original source... Go to PubMed...
  101. Harper JM, Wang M, Galecki AT, Ro J, Williams JB, Miller RA. Fibroblasts from long-lived bird species are resistant to multiple forms of stress. J Exp Biol 2011;214(11):1902-10. Go to original source... Go to PubMed...
  102. Pamplona R, Portero-Otín M, Riba D, Ledo F, Gredilla R, Herrero A, Barja G. Heart fatty acid unsaturation and lipid peroxidation, and aging rate, are lower in the canary and the parakeet than in the mouse. Aging (Milano) 1999;11(1):44-9. Go to original source... Go to PubMed...
  103. Hickey AJR, Jüllig M, Aitken J, Loomes K, Hauber ME, Phillips ARJ. Birds and longevity: Does flight driven aerobicity provide an oxidative sink? Ageing Res Rev 2012;11(2):242-53. Go to original source... Go to PubMed...
  104. Wu XW, Muzny DM, Lee CC, Caskey CT. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol 1992;34(1):78-84. Go to original source... Go to PubMed...
  105. Tsahar E, Arad Z, Izhaki I, Guglielmo CG. The relationship between uric acid and its oxidative product allantoin: a potential indicator for the evaluation of oxidative stress in birds. J Comp Physiol B. 2006;176(7):653-61. Go to original source... Go to PubMed...
  106. Sahm A, Bens M, Szafranski K, Holtze S, Groth M, Görlach M, Calkhoven C, Müller C, Schwab M, Kraus J, Kestler HA, Cellerino A, Burda H, Hildebrandt T, Dammann P, Platzer M. Long-lived rodents reveal signatures of positive selection in genes associated with lifespan. PLoS Genet 2018;14(3):e1007272. Go to original source... Go to PubMed...
  107. Lewis KN, Mele J, Hornsby PJ, Buffenstein R. Stress Resistance in the Naked Mole-Rat: The Bare Essentials-A Mini-Review. Gerontology 2012;58(5):453-62. Go to original source... Go to PubMed...
  108. Elbourkadi N, Austad SN, Miller RA. Fibroblasts from long-lived species of mammals and birds show delayed, but prolonged, phosphorylation of ERK. Aging Cell 2014;13(2):283-91. Go to original source... Go to PubMed...
  109. Pan H, Finkel T. Key proteins and pathways that regulate lifespan. J Biol Chem 2017;292(16):6452-60. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.