Biomedical papers, 2016 (vol. 160), issue 3

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016, 160(3):343-357 | 10.5507/bp.2016.021

The role of microRNA in metastatic processes of non-small cell lung carcinoma

Zuzana Pastorkovaa, Jozef Skardaa, Jozef Andelb
a Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
b Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic

Background: MicroRNAs are small non-coding one-stranded RNA molecules that play an important role in the post-transcriptional regulation of genes. Bioinformatic predictions indicate that each miRNA can regulate hundreds of target genes. MicroRNA expression can be associated with various cellular processes leading to the metastasis of malignant tumours including non-small cell lung carcinoma. This review summarizes current knowledge on the role of microRNAs in NSCLC metastasis to the brain and lymph nodes.

Methods: A search of the NCBI/PubMed database for publications on expression levels and the mechanisms of microRNA action in NSCLC metastasis.

Results and Conclusion: Dysregulation of microRNAs in NSCLC can be associated with brain and lymph node metastasis. There are differences in microRNA expression profiling between NSCLC with and without metastases but it is currently not possible to reliably predict the site of metastasis in NSCLC. Based on data from RNAmicroarrays, bioinformatics analysis is able to predict the target genes of highlighted microRNAs, providing us with complex information about cancer cell features such as enhanced proliferation, migration and invasion. Such microRNAs may then be knocked-down using siRNAs or substituted with miRNA mimics. RNA microarray profiling may thus be a useful tool to select up- or down-regulated microRNAs. A number of authors suggest that microRNAs could serve as biomarkers and therapeutic targets in the treatment of NSCLC metastasis.

Keywords: microRNA, non-small cell lung carcinoma, brain metastasis, lymph node metastasis

Received: November 3, 2015; Accepted: April 8, 2016; Prepublished online: April 21, 2016; Published: September 20, 2016


References

  1. Hoffman PC, Mauer AM, Vokes EE. Lung cancer. Lancet 2000;355(9202):479-85. Go to original source... Go to PubMed...
  2. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics 2007;57(1):43-66.
  3. van Meerbeeck JP. Staging of non-small cell lung cancer: consensus, controversies and challenges. Lung Cancer 2001;34 Suppl 2:S95-107. Go to original source... Go to PubMed...
  4. Grinberg-Rashi H, Ofek E, Perelman M, Skarda J, Yaron P, Hajdúch M, Jacob-Hirsch J, Amariglio N, Krupsky M, Simansky DA, Ram Z, Pfeffer R, Galernter I, Steinberg DM, Ben-Dov I, Rechavi G, Izraeli S. The expression of three genes in primary non-small cell lung cancer is associated with metastatic spread to the brain. Clin Cancer Res 2009;15(5):1755-61. Go to original source... Go to PubMed...
  5. Ambros V. The functions of animal microRNAs. Nature 2004;431(7006):350-5. Go to original source... Go to PubMed...
  6. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120(1):15-20. Go to original source... Go to PubMed...
  7. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116(2):281-97. Go to original source... Go to PubMed...
  8. Lin PY, Yu SL, Yang PC. MicroRNA in lung cancer. Br J Cancer 2010;103(8):1144-8. Go to original source... Go to PubMed...
  9. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004;101(9):2999-30048. Go to original source... Go to PubMed...
  10. Barger JF, Nana-Sinkam SP. MicroRNA as tools and therapeutics in lung cancer. Respir Med 2015;109(7):803-12. Go to original source... Go to PubMed...
  11. Hashimoto Y, Akiyama Y, Yuasa Y. Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer. PLoS One 2013;8(5):e62589. Go to original source... Go to PubMed...
  12. Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode of action. Nature Rev Mol Cell Biol 2009;10(2):141-8. Go to original source... Go to PubMed...
  13. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumour suppressor gene in human hepatocellular cancer. Gastroenterol 2007;133(2):647-581. Go to original source... Go to PubMed...
  14. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006;9(3):189-98. Go to original source... Go to PubMed...
  15. Naidu S, Magee P, Garofalo M. MiRNA-based therapeutic intervention of cancer. J Hematol Oncol 2015;8:68. Go to original source... Go to PubMed...
  16. Hwang SJ, Lee HW, Kim HR, Song HJ, Lee DH, Lee H, Shin CH, Joung JG, Kim DH,, Joo KM,, Kim HH,. Overexpression of microRNA-95-3p suppresses brain metastasis of lung adenocarcinoma through downregulation of cyclin D1. Oncotarget 2015;6(24):20434-48. Go to original source... Go to PubMed...
  17. Gautschi O, Ratschiller D, Gugger M, Betticher DC, Heighway J. Cyclin D1 in non-small cell lung cancer: a key driver of malignant transformation. Lung Cancer 2007;55(1):1-147. Go to original source... Go to PubMed...
  18. Arber N, Hibshoosh H, Moss SF, Sutter T, Zhang Y, Begg M, Wang S, Weinstein IB, Holt PR. Increaed experwssion of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterol 1996;110(3):669-74. Go to original source... Go to PubMed...
  19. Ohnishi Y, Watanabe M, Wato M, Tanaka A, Kakudo K, Nozaki M. Cyclin D1 expression is correlated with cell differentiation and cell proliferation in oral squamous cell carcinomas. Oncol Lett 2014 Feb 13 [Epub ahead of print] doi:  10.3892/ol.2014.1880. Go to original source... Go to PubMed...
  20. Oyama T, Kashiwabara K, Yoshimoto K, Arnold A, Koerner F. Frequent overexpression of the czclin D1 oncegene in invasive lobular carcinoma. Cancer Res 1998;58(13):2876-80. Go to PubMed...
  21. Arato-Ohshima T, Sawa H. Over-expression of cyclin D1 induces glioma invasion by increasing matrix metalloproteinase activity and cell motility. Int J Cancer 1999;83(3):387-92. Go to original source... Go to PubMed...
  22. Du B, Wang Z, Zhang X, Feng S, Wang G, He J, Zhang B. MicroRNA-545 suppresses cell proliferation by targeting cyclin D1 and CDK4 in lung cancer cells. PLoS One 2014;9(2):e88022. Go to original source... Go to PubMed...
  23. Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell 2008;14(2):159-69. Go to original source... Go to PubMed...
  24. Neumeister P, Pixley FJ, Xiong Y, Xie H, Wu K, Ashton A, Cammer M, Chan A, Symons M, Stanley ER, Pestell RG. Mol Biol Cell Feb 21 [Epub ahead of print] doi:10.1091/mbc.02-07-0102. Go to original source...
  25. Li Z, Wang C, Jiao X, Lu Y, Fu M, Quong AA, Dye C, Yang J, Dai M, Ju X, Zhang X, Li A, Burbelo P, Stanley ER, Pestell RG. Cyclin D1 regulates cellular migration through the inhibition of thrombospondin 1 and ROCK signalling. Mol Cell Biol 2006;26(11):4240-56. Go to original source... Go to PubMed...
  26. Li Z, Jiao X, Wang C, Ju X, Lu Y, Yuan L, Lisanti MP, Katiyar S, Pestell RG. Cyclin D1 induction of cellular migration requires p27(KIP1). Cancer Res 2006;66(20):9986-94. Go to original source... Go to PubMed...
  27. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev A. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 1999;96(10):5522-7. Go to original source... Go to PubMed...
  28. Chen LT, Xu SD, Xu H, Zhang JF, Ning JF, Wang SF. MicroRNA-378 is associated with non-small cell lung cancer brain metastasis by promoting cell migration, invasion and tumour angiogenesis. Med Oncol 2012;29(3):1673-80. Go to original source... Go to PubMed...
  29. Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB, Zhang Y. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 2006;1:e116. Go to original source... Go to PubMed...
  30. Arora S, Ranade AR, Tran NL, Nasser S, Sridhar S, Korn RL, Ross JT, Dhruv H, Foss KM, Sibenaller Z, Ryken T, Gotway MB, Kim S, Weiss GJ. MicroRNA-328 is associated with (non-small) cell lung cancer (NSCLC) brain metastasis and mediates NSCLC migration. Int J Cancer 2011;129(11):2621-31. Go to original source... Go to PubMed...
  31. Liu X, Shi H, Liu B, Li J, Liu Y, Yu B. miR-330-3p controls cell proliferation by targeting early growth response 2 in non-small-cell lung cancer. Acta Biochim Biophys Sin 2015;47(6):431-40. Go to original source... Go to PubMed...
  32. Unoki M, Nakamura Y. EGR2 induces apoptosis in various cancer cell lines by direct transactivation of BNIP3L and BAK. Oncogene 2003;22(14):2172-85. Go to original source... Go to PubMed...
  33. Remon J, Alvarez-Berdugo D, Majem M, Moran T, Reguart N, Lianes P. miRNA-197 and miRNA-184 are associated with brain metastasis in EGFR-mutant lung cancers. Clin Transl Oncol 2015 Jul 22. [Epub ahead of print] doi: 10.1007/s12094-015-1347-2. Go to original source...
  34. Zheng D, Haddadin S, Wang Y, Gu LQ, Perry MC, Freter CE, Wang MX. Plasma microRNAs as novel biomarkers for early detection of lung cancer. Int J Clin Exp Pathol 2011;4(6):575-868. Go to PubMed...
  35. Du L, Schageman JJ, Subauste MC, Saber B, Hammond SM, Prudkin L, Wistuba II, Ji L, Roth JA, Minna JD, Pertsemlidis A. miR-93, miR-98, and miR-197 regulate expression of tumour suppressor gene FUS1. Mol Cancer Res 2009;7(8):1234-43. Go to original source... Go to PubMed...
  36. Fiori ME, Barbini C, Haas TL, Marroncelli N, Patrizii M, Biffoni M, De Maria R. Antitumour effect of miR-197 targeting in p53 wild-type lung cancer. Cell Death Differ 2014;21(5):774-82. Go to original source... Go to PubMed...
  37. Ji L, Roth JA. Tumour suppressor FUS1 signalling pathway. J Thorac Oncol 2008;3(4):327-30. Go to original source... Go to PubMed...
  38. Liu Z, Mai C, Yang H, Zhen Y, Yu X, Hua S, Wu Q, Jiang Q, Zhang Y, Song X, Fang W. Candidate tumour suppressor CCDC19 regulates miR-184 direct targeting of C-Myc thereby suppressing cell growth in non-small cell lung cancers. J Cell Mol Med 2014;18(8):1667-79. Go to original source... Go to PubMed...
  39. Wu GG, Li WH, He WG, Jiang N, Zhang GX, Chen W, Yang HF, Liu QL, Huang YN, Zhang L, Zhang T, Zeng XC. Mir-184 post-transcriptionally regulates SOX7 expression and promotes cell proliferation in human hepatocellular carcinoma. PLoS One 2014;9(2):e88796. Go to original source... Go to PubMed...
  40. Hayano T, Garg M, Yin D, Sudo M, Kawamata N, Shi S, Chien W, Ding LW, Leong G, Mori S, Xie D, Tan P, Koeffler HP. SOX7 is down-regulated in lung cancer. J Exp Clin Cancer Res 2013;32:17. Go to original source... Go to PubMed...
  41. Stovall DB, Cao P, Sui G. SOX7: from a developmental regulator to an emerging tumour suppressor. Histol Histopathol 2014;29(4):439-459. Go to PubMed...
  42. Guo L, Zhong D, Lau S, Liu X, Dong XY, Sun X, Yang VW, Vertino PM, Moreno CS, Varma V, Dong JT, Zhou W. Sox7 Is an independent checkpoint for beta-catenin function in prostate and colon epithelial cells. Mol Cancer Res 2008;6(9):1421-30. Go to original source... Go to PubMed...
  43. Liu J, Wang X, Yang X, Liu Y, Shi Y, Ren J, Guleng B. miRNA423-5p regulates cell proliferation and invasion by targeting trefoil factor 1 in gastric cancer cells. Cancer Lett 2014;347(1):98-104. Go to original source... Go to PubMed...
  44. Zhao C, Xu Y, Zhang Y, Tan W, Xue J, Yang Z, Zhang Y, Lu Y, Hu X. Downregulation of miR-145 contributes to lung adenocarcinoma cell growth to form brain metastases. Oncol Rep 2013;30(5):2027-34. Go to PubMed...
  45. Zhang Y, Yang X, Wu H, Zhou W, Liu Z. MicroRNA-145 inhibits migration and invasion via inhibition of fascin 1 protein expression in non-small-cell lung cancer cells. Mol Med Rep 2015;12(4):6193-8. Go to PubMed...
  46. Peraud A, Mondal S, Hawkins C, Mastronardi M, Bailey K, Rutka JT. Expression of fascin, an actin-bundling protein, in astrocytomas of varying grades. Brain Tumour Pathol 2003;20(2):53-8. Go to original source... Go to PubMed...
  47. Zhang Y, Lin Q. MicroRNA-145 inhibits migration and invasion by down-regulating FSCN1 in lung cancer. Int J Clin Exp Med 2015;8(6):8794-802. Go to PubMed...
  48. Ye Z, Shen N, Weng Y, Li K, Hu L, Liao H, An J, Liu L, Lao S, Cai S. Low miR-145 silenced by DNA methylation promotes NSCLC cell proliferation, migration and invasion by targeting mucin 1. Cancer Biol Ther 2015;16(7):1071-9. Go to original source... Go to PubMed...
  49. Jain S, Stroopinsky D, Yin L, Rosenblatt J, Alam M, Bhargava P, Clark RA, Kupper TS, Palmer K, Coll MD, Rajabi H, Pyzer A, Bar-Natan M, Luptakova K, Arnason J, Joyce R, Kufe D, Avigan D. Mucin 1 is a potential therapeutic target in cutaneous T-cell lymphoma. Blood 2015;126(3):354-62. Go to original source... Go to PubMed...
  50. Cho WC, Chow AS, Au JS. MiR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1. RNA Biol 2011;8(1):125-311. Go to original source... Go to PubMed...
  51. Mo JY, Maki H, Sekiguchi M. Hydrolytic elimination of a mutagenic nucleotide, 8-oxoGTP, by human 18-kilodalton protein: sanitization of nucleotide pool. Proc Natl Acad Sci USA 1992;89(22):11021-5. Go to original source... Go to PubMed...
  52. Maki H, Sekiguchi M. MutT protein specifically hydrolyzes a potent mutagenic substrate for DNA synthesis. Nat 1992;355(6357):273-5. Go to original source... Go to PubMed...
  53. Kennedy CH, Pass HI, Mitchell JB. Expression of human MutT homologue (hMTH1) protein in primary non-small cell lung carcinomas and histologically normal surrounding tissue. Free Radic Biol Med 2003;34(11):1447-57. Go to original source... Go to PubMed...
  54. Okamoto K, Toyokuni S, Kim WJ, Ogawa O, Kakehi Y, Arao S, Hiai H, Yoshida O. Overexpression of human mutT homologue gene messenge rRNA in renal-cell carcinoma: evidence of persistent oxidative stress in cencer. Int J Cancer 1996;65(4):437-41. Go to original source... Go to PubMed...
  55. Wani G, Milo GE, D'Ambrosio SM. Enhanced expression of the 8-oxo-7,8-dihydrodeoxyguanosine triphosphatase gene in human breast tumour cells. Cancer Lett 1998;125(1-2):123-30. Go to original source... Go to PubMed...
  56. Iida T, Furuta A, Kawashima M, Nishida J, Nakabeppu Y, Iwaki T. Accumulation of 8-oxo-2'- deoxyguanosine and increased expression of hMTH1 protein in brain tumours. Neuro Oncol 2001;3(2):73-81. Go to PubMed...
  57. Huber KV, Salah E, Radic B, Gridling M, Elkins JM, Stukalov A, Jemth AS, Göktürk C, Sanjiv K, Strömberg K, Pham T, Berglund UW, Colinge J,Bennett KL, Loizou JI, Helleday T, Knapp S, Superti-Furga G. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature Apr 2 [Epub ahead of print] doi:  10.1038/nature13194. Go to original source...
  58. Cheng CY, Hsieh HL, Sun CC, Lin CC, Luo SF, Yang CM. IL-1 beta induces urokinase-plasminogen activator expression and cell migration through PKC alpha, JNK1/2, and NF-kappaB in A549 cells. J Cell Physiol 2009;219(1):183-93. Go to original source... Go to PubMed...
  59. Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumour invasion. Physiol Rev 1993;73(1):161-95. Go to PubMed...
  60. Hori K, Sen A, Artavanis-Tsakonas S. Notch signalling at a glance. J Cell Sci 2013;126(Pt 10):2135-40. Go to original source... Go to PubMed...
  61. Grabher C, von Boehmer H, Look AT. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 2006;6(5):347-59. Go to original source... Go to PubMed...
  62. Dang TP, Gazdar AF, Virmani AK, Sepetavec T, Hande KR, Minna JD, Roberts JR, Carbone DP. Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. J Natl Cancer Inst 2000;92(16):1355-7. Go to original source... Go to PubMed...
  63. Zhao M, Gao FH, Wang JY, Liu F, Yuan HH, Zhang WY, Jiang B. JAK2/STAT3 signalling pathway activation mediates tumour angiogenesis by upregulation of VEGF and bFGF in non-small-cell lung cancer. Lung Cancer 2011;73(3):366-74. Go to original source... Go to PubMed...
  64. Chen P, Zhu J, Liu DY, Li HY, Xu N, Hou M. Over-expression of survivin and VEGF in small-cell lung cancer may predict the poorer prognosis. Med Oncol 2014;31(1):775. Go to original source... Go to PubMed...
  65. Shepard CR, Kassis J, Whaley DL, Kim HG, Wells A. PLC gamma contributes to metastasis of in situ-occurring mammary and prostate tumours. Oncogene 2007;26(21):3020-60. Go to original source... Go to PubMed...
  66. Jones NP, Peak J, Brader S, Eccles SA, Katan M. PLCgamma1 is essential for early events in integrin signalling required for cell motility. J Cell Sci 2005;118(Pt 12):2695-706. Go to original source... Go to PubMed...
  67. Meng W, Ye Z, Cui R, Perry J, Dedousi-Huebner V, Huebner A, Wang Y, Li B, Volinia S, Nakanishi H, Kim T, Suh SS, Ayers LW, Ross P, Croce CM, Chakravarti A, Jin VX, Lautenschlaeger T. MicroRNA-31 predicts the presence of lymph node metastases and survival in patients with lung adenocarcinoma. Clin Cancer Res 2013;19(19):5423-33. Go to original source... Go to PubMed...
  68. Johnen N, Francart ME, Thelen N, Cloes M, Thiry M. Evidence for a partial epithelial-mesenchymal transition in postnatal stages of rat auditory organ morphogenesis. Histochem Cell Biol 2012;138(3):477-88. Go to original source... Go to PubMed...
  69. Yang Z, Garcia A, Xu S, Powell DR, Vertino PM, Singh S, Marcus AI. Withania somnifera root extract inhibits mammary cancer metastasis and epithelial to mesenchymal transition. PLoS One 2013;8(9):e75069. Go to original source... Go to PubMed...
  70. Mendez MG, Kojima S, Goldman RD. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J 2010;24(6):1838-51. Go to original source... Go to PubMed...
  71. Kang Y, Massagué J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell ;118(3):277-9. Go to PubMed...
  72. Liu CH Y,  Lin HH,  Tang MJ,  Wang YK. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal orgatnization and focal adhesion maturation. Oncotarget 2015; 6(18): 15966-15983. Go to original source... Go to PubMed...
  73. Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signalling, development, and disease. J Cell Biol 2006;172(7):973-81. Go to original source... Go to PubMed...
  74. Snchez-Tilló E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A, Postigo A. EMT-activating transcription factors in cancer: beyond EMT and tumour invasiveness. Cell Mol Life Sci 2012;69(20):3429-56. Go to original source... Go to PubMed...
  75. Kaufhold S, Bonavida B. Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. J Exp Clin Cancer Res 2014;33:62. Go to original source... Go to PubMed...
  76. Pak MG, Lee CH, Lee WJ, Shin DH, Roh MS. Unique microRNAs in lung adenocarcinoma groups according to major TKI sensitive EGFR mutation status. Diagn Pathol 2015;10:99. Go to original source... Go to PubMed...
  77. Sarver AL, Li L, Subramanian S. MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumour cell migration. Cancer Res 2010;70(23):9570-80. Go to original source... Go to PubMed...
  78. Baron V, Adamson ED, Calogero A, Ragona G, Mercola D. The transcription factor Egr1 is a direct regulator of multiple tumour suppressors including TGFbeta1, PTEN, p53, and fibronectin. Cancer Gene Ther 2006;13(2):115-24. Go to original source... Go to PubMed...
  79. Yang J, Liu H, Wang H, Sun Y. Down-regulation of microRNA-181b is a potential prognostic marker of non-small cell lung cancer. Pathol Res Pract 2013;209(8):490-4. Go to original source... Go to PubMed...
  80. Cui Y, Han Z, Hu Y, Song G, Hao C, Xia H, Ma X. MicroRNA-181b and microRNA-9 mediate arsenic-induced angiogenesis via NRP1. J Cell Physiol 2012;227(2):772-83. Go to original source... Go to PubMed...
  81. Hong TM, Chen YL, Wu YY, Yuan A, Chao YC, Chung YC, Wu MH, Yang SC, Pan SH, Shih JY, Chan WK, Yang PC. Targeting neuropilin 1 as an antitumour strategy in lung cancer. Clin Cancer Res 2007;13(16):4759-68. Go to original source... Go to PubMed...
  82. Gelfand MV, Hagan N, Tata A, Oh WJ, Lacoste B, Kang KT, Kopycinska J, Bischoff J, Wang JH, Gu C. Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding. Elife Sep 22 [Epub ahead of print] doi:  10.7554/eLife.03720. Go to original source...
  83. Lampropoulou A, Ruhrberg C. Neuropilin regulation of angiogenesis.  Biochem Soc Trans 2014;42 (6) 1623-1628. Go to original source... Go to PubMed...
  84. Ding M, Liu L, Hu C, Liu Y, Qiao Y, Jiang X. Expression of VEGFR2 and NRP-1 in non-small cell lung cancer and their clinical significance.Chin J Cancer Res 2014;26(6):669-77. Go to PubMed...
  85. Sun Y, Ai X, Shen S, Lu S. NF-?B-mediated miR-124 suppresses metastasis of non-small-cell lung cancer by targeting MYO10. Oncotarget 2015;6(10):8244-54. Go to original source... Go to PubMed...
  86. Courson DS, Cheney RE. Myosin-X and disease. Exp Cell Res 2015;334(1):10-5. Go to original source... Go to PubMed...
  87. Schoumacher M, Goldman RD, Louvard D, Vignjevic DM. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J Cell Biol 2010;189(3):541-56. Go to original source... Go to PubMed...
  88. Hatziapostolou M, Polytarchou C, Aggelidou E, Drakaki A, Poultsides GA, Jaeger SA, Ogata H, Karin M, Struhl K, Hadzopoulou-Cladaras M, Iliopoulos D. An HNF4a-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell 2011;147(6):1233-47. Go to original source... Go to PubMed...
  89. Xie C, Han Y, Liu Y, Han L, Liu J. miRNA-124 down-regulates SOX8 expression and suppresses cell proliferation in non-small cell lung cancer. Int J Clin Exp Pathol 2014;7(11):7518-264. Go to PubMed...
  90. Zhang S, Zhu C, Zhu L, Liu H, Liu S, Zhao N, Wu J, Huang X, Zhang Y, Jin J, Ji T, Ding X. Oncogenicity of the transcription factor SOX8 in hepatocellular carcinoma. Med Oncol 2014;31(4):918. Go to original source... Go to PubMed...
  91. Zhu D, Chen H, Yang X, Chen W, Wang L, Xu J, Yu L. Decreased microRNA-224 and its clinical significance in non-small cell lung cancer patients. Diagn Pathol 2014;9:198. Go to original source... Go to PubMed...
  92. Cui R, Meng W, Sun HL, Kim T, Ye Z, Fassan M, Jeon YJ, Li B, Vicentini C, Peng Y, Lee TJ, Luo Z, Liu L, Xu D, Tili E, Jin V, Middleton J, Chakravarti A, Lautenschlaeger T, Croce CM. MicroRNA-224 promotes tumour progression in nonsmall cell lung cancer. Proc Natl Acad Sci U S A 2015;112(31):E4288-97. Go to original source... Go to PubMed...
  93. Zhou J, Hu X, Xiong X, Liu X, Liu Y, Ren K, Jiang T, Hu X, Zhang J. Cloning of two rat PDIP1 related genes and their interactions with proliferating cell nuclear antigen. J Exp Zool A Comp Exp Biol 2005;303(3):227-40. Go to original source... Go to PubMed...
  94. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med 2000;342(18):1350-8. Go to original source... Go to PubMed...
  95. Anumanthan G, Halder SK, Osada H, Takahashi T, Massion PP, Carbone DP, Datta PK. Restoration of TGF-beta signalling reduces tumourigenicity in human lung cancer cells. Br J Cancer 2005;93(10):1157-67. Go to original source... Go to PubMed...
  96. Cui R,, Kim T, Fassan M,, Meng W, Sun HL, Jeon YJ, Vicentini C, Tili E,, Peng Y, Scarpa A, Liang G, Zhang YK, Chakravarti A, Croce CM. MicroRNA-224 is implicated in lung cancer pathogenesis through targeting caspase-3 and caspase-7. Oncotarget 2015;6(26):21802-15. Go to original source... Go to PubMed...
  97. Li J, Yuan J. Caspases in apoptosis and beyond. Oncogene 2008;27(48):6194-206. Go to original source... Go to PubMed...
  98. Hirata H, Takahashi A, Kobayashi S, Yonehara S, Sawai H, Okazaki T, Yamamoto K, Sasada M. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med 1998;187(4):587-600. Go to original source... Go to PubMed...
  99. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 1999;144(2):281-92. Go to original source... Go to PubMed...
  100. Ge H, Li B, Hu WX, Li RJ, Jin H, Gao MM, Ding CM. MicroRNA-148b is down-regulated in non-small cell lung cancer and associated with poor survival. Int J Clin Exp Pathol 2015;8(1):800-55. Go to PubMed...
  101. Yang JS, Li BJ, Lu HW, Chen Y, Lu C, Zhu RX, Liu SH, Yi QT, Li J, Song CH. Serum miR-152, miR-148a, miR-148b, and miR-21 as novel biomarkers in non-small cell lung cancer screening. Tumour Biol 2015;36(4):3035-42. Go to original source... Go to PubMed...
  102. Li J, Song Y, Wang Y, Luo J, Yu W. MicroRNA-148a suppresses epithelial-to-mesenchymal transition by targeting ROCK1 in non-small cell lung cancer cells. Mol Cell Biochem 2013;380(1-2):277-82. Go to original source... Go to PubMed...
  103. Liu GL, Liu X, Lv XB, Wang XP, Fang XS, Sang Y. miR-148b functions as a tumour suppressor in non-small cell lung cancer by targeting carcinoembryonic antigen (CEA). Int J Clin Exp Med 2014;7(8):1990-94. Go to PubMed...
  104. Kuespert K, Pils S, Hauck CR. CEACAMs: their role in physiology and pathophysiology. Curr Opin Cell Biol 2006;18(5):565-717. Go to original source... Go to PubMed...
  105. Su Y, Wang Y, Zhou H, Lei L, Xu L. MicroRNA-152 targets ADAM17 to suppress NSCLC progression. FEBS Lett 2014;588(10):1983-8. Go to original source... Go to PubMed...
  106. Cheng Z, Ma R, Tan W, Zhang L. MiR-152 suppresses the proliferation and invasion of NSCLC cells by inhibiting FGF2. Exp Mol Med 2014;46:e112. Go to original source... Go to PubMed...
  107. Wan L, Zhu L, Xu J, Lu B, Yang Y, Liu F, Wang Z. MicroRNA-409-3p functions as a tumour suppressor in human lung adenocarcinoma by targeting c-Met. Cell Physiol Biochem 2014;34(4):1273-90. Go to original source... Go to PubMed...
  108. Porter AC, Vaillancourt RR. Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene 1998;17(11 Reviews):1343-52. Go to original source... Go to PubMed...
  109. Lowery FJ, Yu D. Growth factor signalling in metastasis: current understanding and future opportunities. Cancer Metastasis Rev 2012;31(3-4):479-91. Go to original source... Go to PubMed...
  110. Grzelakowska-Sztabert B, Dudkowska M. Paradoxical action of growth factors: antiproliferative and proapoptotic signalling by HGF/c-MET. Growth Factors 2011;29(4):105-18. Go to original source... Go to PubMed...
  111. Organ SL, Tsao MS. An overview of the c-MET signalling pathway. Ther Adv Med Oncol 2011;3(1 Suppl):S7-S19. Go to original source... Go to PubMed...
  112. Yu T, Li J, Yan M, Liu L, Lin H, Zhao F, Sun L, Zhang Y, Cui Y, Zhang F, Li J, He X, Yao M. MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signalling pathway. Oncogene 2015;34(4):413-23. Go to original source... Go to PubMed...
  113. Anastasi S, Lamberti D, Alemà S, Segatto O. Regulation of the ErbB network by the MIG6 feedback loop in physiology, tumour suppression and responses to oncogene-targeted therapeutics. Semin Cell Dev Biol 2015 Oct 9. [Epub ahead of print] doi:10.1016/j.semcdb.2015.10.001. Go to original source...
  114. Fumarola C, Bonelli MA, Petronini PG, Alfieri RR. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem Pharmacol 2014;90(3):197-207. Go to original source... Go to PubMed...
  115. Scrima M, De Marco C, Fabiani F, Franco R, Pirozzi G, Rocco G, Ravo M, Weisz A, Zoppoli P, Ceccarelli M, Botti G, Malanga D, Viglietto G. Signalling networks associated with AKT activation in non-small cell lung cancer (NSCLC): new insights on the role of phosphatydil-inositol-3 kinase. PLoS One 2012;7(2):e30427. Go to original source... Go to PubMed...
  116. He D, Wang J, Zhang C, Shan B, Deng X, Li B, Zhou Y, Chen W, Hong J, Gao Y, Chen Z, Duan C. Down-regulation of miR-675-5p contributes to tumour progression and development by targeting pro-tumourigenic GPR55 in non-small cell lung cancer. Mol Cancer 2015;14:73. Go to original source... Go to PubMed...
  117. Li T, Song T, Ni L, Yang G, Song X, Wu L, Liu B, Liu C. The p-ERK-p-c-Jun-cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract. Biochem Biophys Res Commun 2014;453(3):316-20. Go to original source... Go to PubMed...
  118. Gautschi O, Ratschiller D, Gugger M, Betticher DC, Heighway J. Cyclin D1 in non-small cell lung cancer: a key driver of malignant transformation. Lung Cancer 2007;55(1):1-147. Go to original source... Go to PubMed...
  119. Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M. NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol 1999;19(4):2690-8. Go to original source... Go to PubMed...
  120. Salhia B, Tran NL, Symons M, Winkles JA, Rutka JT, Berens ME. Molecular pathways triggering glioma cell invasion. Expert Rev Mol Diagn 2006;6(4):613-26. Go to original source... Go to PubMed...
  121. Stamenkovic I. Matrix metalloproteinases in tumour invasion and metastasis. Semin Cancer Biol 2000;10(6):415-33. Go to original source... Go to PubMed...
  122. Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J Nov 19 [Epub ahead of print] doi: 10.1111/j.1742-4658.2010.07919.x. Go to original source...
  123. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumour metastasis. Cancer Metastasis Rev 2006;25(1):9-34. Go to original source... Go to PubMed...
  124. Pei J, Lou Y, Zhong R, Han B. MMP9 activation triggered by epidermal growth factor induced FoxO1 nuclear exclusion in non-small cell lung cancer. Tumour Biol 2014;35(7):6673-8. Go to original source... Go to PubMed...
  125. Jian H, Zhao Y, Liu B, Lu S. SEMA4b inhibits MMP9 to prevent metastasis of non-small cell lung cancer. Tumour Biol 2014;35(11):11051-6. Go to original source... Go to PubMed...
  126. Wang H, Guan X, Tu Y, Zheng S, Long J, Li S, Qi C, Xie X, Zhang H, Zhang Y. MicroRNA-29b attenuates non-small cell lung cancer metastasis by targeting matrix metalloproteinase 2 and PTEN. J Exp Clin Cancer Res 2015;34:59. Go to original source... Go to PubMed...
  127. Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 2012;13(5):283-96. Go to PubMed...
  128. de Assis LV, Isoldi MC. The function, mechanisms, and role of the genes PTEN and TP53 and the effects of asbestos in the development of malignant mesothelioma: a review focused on the genes' molecular mechanisms. Tumour Biol 2014;35(2):889-901. Go to original source... Go to PubMed...
  129. Tang R, Zhong T, Dang Y, Zhang X, Li P, Chen G. Association between downexpression of MiR-203 and poor prognosis in non-small cell lung cancer patients. Clin Transl Oncol 2015 Aug 26. [Epub ahead of print] doi: 10.1007/s12094-015-1377-9. Go to original source...
  130. Wang N, Liang H, Zhou Y, Wang C, Zhang S, Pan Y, Wang Y, Yan X, Zhang J, Zhang CY, Zen K, Li D, Chen X. miR-203 suppresses the proliferation and migration and promotes the apoptosis of lung cancer cells by targeting SRC. PLoS One 2014;9(8):e105570. Go to original source... Go to PubMed...
  131. O'Neill AK, Gallegos LL, Justilien V, Garcia EL, Leitges M, Fields AP, Hall RA, Newton AC. Protein kinase Ca promotes cell migration through a PDZ-dependent interaction with its novel substrate discs large homolog 1 (DLG1). J Biol Chem 2011;286(50):43559-68. Go to original source... Go to PubMed...
  132. Jin J, Deng J, Wang F, Xia X, Qiu T, Lu W, Li X, Zhang H, Gu X, Liu Y, Cao W, Shao W. The expression and function of microRNA-203 in lung cancer. Tumour Biol 2013;34(1):349-57. Go to original source... Go to PubMed...
  133. McKenzie JA, Grossman D. Role of the apoptotic and mitotic regulator survivin in melanoma. Anticancer Res 2012;32(2):397-404. Go to PubMed...
  134. Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V, Chen Y, Deng G, Tanaka Y, Dahiya R. Regulatory Role of mir-203 in Prostate Cancer Progression and Metastasis. Clin Cancer Res 2011;17(16):5287-98. Go to original source... Go to PubMed...
  135. Wang N, Liang H, Zhou Y, Wang C, Zhang S, Pan Y, Wang Y, Yan X, Zhang J, Zhang CY, Zen K, Li D, Chen X. miR-203 suppresses the proliferation and migration and promotes the apoptosis of lung cancer cells by targeting SRC. PLoS One 2014;9(8):e105570. Go to original source... Go to PubMed...
  136. Ren P, Gong F, Zhang Y, Jiang J, Zhang H. MicroRNA-92a promotes growth, metastasis, and chemoresistance in non-small cell lung cancer cells by targeting PTEN. Tumour Biol 2015 Oct 02. [Epub ahead of print] doi: 10.1007/s13277-015-4150-3. Go to original source...
  137. Zhang J, Han L, Ge Y, Zhou X, Zhang A, Zhang C, Zhong Y, You Y, Pu P, Kang C. miR-221/222 promote malignant progression of glioma through activation of the Akt pathway. Int J Oncol 2010;36(4):913-20. Go to PubMed...
  138. Chen S, Li P, Yang R, Cheng R, Zhang F, Wang Y, Chen X, Sun Q, Zang W, Du Y, Zhao G, Zhang G. microRNA-30b inhibits cell invasion and migration through targeting collagen triple helix repeat containing 1 in non-small cell lung cancer. Cancer Cell Int 2015;15:85. Go to original source... Go to PubMed...
  139. Pesta M, Kulda V, Kucera R, Pesek M, Vrzalova J, Liska V, Pecen L, Treska V, Safranek J, Prazakova M, Vycital O, Bruha J, Holubec L, Topolcan O. Prognostic significance of TIMP-1 in non-small cell lung cancer. Anticancer Res 2011;31(11):4031-8. Go to PubMed...
  140. Ke Z, He W, Lai Y, Guo X, Chen S, Li S, Wang Y, Wang L. Overexpression of collagen triple helix repeat containing 1 (CTHRC1) is associated with tumour aggressiveness and poor prognosis in human non-small cell lung cancer. Oncotarget 2014;5(19):9410-24. Go to original source... Go to PubMed...
  141. Yan A, Yang C, Chen Z, Li C, Cai L. MiR-761 Promotes Progression and Metastasis of Non-Small Cell Lung Cancer by Targeting ING4 and TIMP2. Cell Physiol Biochem 2015;37(1):55-66. Go to original source... Go to PubMed...
  142. Bourboulia D, Han H, Jensen-Taubman S, Gavil N, Isaac B, Wei B, Neckers L, Stetler-Stevenson WG. TIMP-2 modulates cancer cell transcriptional profile and enhances E-cadherin/beta-catenin complex expression in A549 lung cancer cells. Oncotarget 2013;4(1):163-73. Go to original source... Go to PubMed...
  143. Xie Y, Zhang H, Sheng W, Xiang J, Ye Z, Yang J. Adenovirus-mediated ING4 expression suppresses lung carcinoma cell growth via induction of cell cycle alteration and apoptosis and inhibition of tumour invasion and angiogenesis. Cancer Lett 2008;271(1):105-16. Go to original source... Go to PubMed...
  144. Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E, Barnett GH, Jain RK. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature 2004;428(6980):328-32. Go to original source... Go to PubMed...
  145. Li Y, Jiang Q, Xia N, Yang H, Hu C. Decreased expression of microRNA-375 in nonsmall cell lung cancer and its clinical significance. J Int Med Res 2012;40(5):1662-9. Go to original source... Go to PubMed...
  146. Yu H, Jiang L, Sun C, Guo L, Lin M, Huang J, Zhu L. Decreased circulating miR-375: A potential biomarker for patients with non-small-cell lung cancer. Gene 2013 Jan 15 [Epub ahead of print] doi: 10.1016/j.gene.2013.10.024. Go to original source... Go to PubMed...
  147. Kong KL, Kwong DL, Chan TH, Law SY, Chen L, Li Y, Qin YR, Guan XY. MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut 2012;61(1):33-42. Go to original source... Go to PubMed...
  148. Hu G, Wei Y, Kang Y. The multifaceted role of MTDH/AEG-1 in cancer progression. Clin Cancer Res 2009;15(18):5615-20. Go to original source... Go to PubMed...
  149. He W, He S, Wang Z, Shen H, Fang W, Zhang Y, Qian W, Lin M, Yuan J, Wang J, Huang W, Wang L, Ke Z. Astrocyte elevated gene-1(AEG-1) induces epithelial-mesenchymal transition in lung cancer through activating Wnt/β-catenin signalling. BMC Cancer 2015;15:107. Go to original source... Go to PubMed...
  150. Lan D, Zhang X, He R, Tang R, Li P, He Q, Chen G. MiR-133a is down-regulated in non-small cell lung cancer: a study of clinical significance. Eur J Med Res 2015;20:50. Go to original source... Go to PubMed...
  151. Wang LK, Hsiao TH, Hong TM, Chen HY, Kao SH, Wang WL, Yu SL, Lin CW, Yang PC. MicroRNA-133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma. PLoS One 2014;9(5):e96765. Go to original source... Go to PubMed...
  152. Kim JS, Kim ES, Liu D, Lee JJ, Solis L, Behrens C, Lippman SM, Hong WK, Wistuba II, Lee HY. Prognostic implications of tumoural expression of insulin like growth factors 1 and 2 in patients with non-small-cell lung cancer. Clin Lung Cancer 2014;15(3):213-21. Go to original source... Go to PubMed...
  153. Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997;390(6659):465-71. Go to original source... Go to PubMed...
  154. Park C, Kim WS, Choi Y, Kim H, Park K. Effects of transforming growth factor beta (TGF-beta) receptor on lung carcinogenesis. Lung Cancer 2002;38(2):143-7. Go to original source... Go to PubMed...
  155. Wang D, Kanuma T, Mizunuma H, Takama F, Ibuki Y, Wake N, Mogi A, Shitara Y, Takenoshita S. Analysis of specific gene mutations in the transforming growth factor-beta signal transduction pathway in human ovarian cancer. Cancer Res 2000;60(16):4507-12. Go to PubMed...
  156. Im YH, Kim HT, Kim IY, Factor VM, Hahm KB, Anzano M, Jang JJ, Flanders K, Haines DC, Thorgeirsson SS, Sizeland A, Kim SJ. Heterozygous mice for the transforming growth factor-beta type II receptor gene have increased susceptibility to hepatocellular carcinogenesis. Cancer Res 2001;61(18):6665-8. Go to PubMed...
  157. Lei Z, Liu RY, Zhao J, Liu Z, Jiang X, You W, Chen XF, Liu X, Zhang K, Pasche B, Zhang HT. TGFBR1 haplotypes and risk of non-small-cell lung cancer. Cancer Res 2009;69(17):7046-52. Go to original source... Go to PubMed...
  158. Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signalling. Mol Syst Biol 2005;1:20055. Go to original source... Go to PubMed...
  159. Holbro T, Civenni G, Hynes NE. The ErbB receptors and their role in cancer progression. Exp Cell Res 2003;284(1):99-110. Go to original source... Go to PubMed...
  160. Zhang Z, Stiegler AL, Boggon TJ, Kobayashi S, Halmos B. EGFR-mutated lung cancer: a paradigm of molecular oncology. Oncotarget 2010;1(7):497-514. Go to original source... Go to PubMed...
  161. Guo Q, Zhang H, Zhang L, He Y, Weng S, Dong Z, Wang J, Zhang P, Nao R. MicroRNA-21 regulates non-small cell lung cancer cell proliferation by affecting cell apoptosis via COX-19. Int J Clin Exp Med 2015;8(6):8835-415. Go to PubMed...
  162. Leary SC, Cobine PA, Nishimura T, Verdijk RM, de Krijger R, de Coo R, Tarnopolsky MA, Winge DR, Shoubridge EA. COX19 mediates the transduction of a mitochondrial redox signal from SCO1 that regulates ATP7A-mediated cellular copper efflux. Mol Biol Cell 2013;24(6):683-91. Go to original source... Go to PubMed...
  163. Leadsham JE, Sanders G, Giannaki S, Bastow EL, Hutton R, Naeimi WR, Breitenbach M, Gourlay CW. Loss of cytochrome c oxidase promotes RAS-dependent ROS production from the ER resident NADPH oxidase, Yno1p, in yeast. Cell Metab 2013;18(2):279-86. Go to original source... Go to PubMed...
  164. Hu H, Li S, Liu J, Ni B. MicroRNA-193b modulates proliferation, migration, and invasion of non-small cell lung cancer cells. Acta Biochim Biophys Sin (Shanghai) 2012;44(5):424-30. Go to original source... Go to PubMed...
  165. Nigg EA. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioassays 1995;17(6):471-80. Go to original source... Go to PubMed...
  166. Knudsen KE, Diehl JA, Haiman CA, Knudsen ES. Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 2006;25(11):1620-8. Go to original source... Go to PubMed...
  167. Klein EA, Assoian RK. Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci 2008;121(Pt 23):3853-7. Go to original source... Go to PubMed...
  168. Chapman HA. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr Opin Cell Biol 1997;9(5):714-24. Go to original source... Go to PubMed...
  169. Sidenius N, Blasi F. The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev 2003;22(2-3):205-22. Go to original source... Go to PubMed...
  170. Savita U, Karunagaran D. MicroRNA-106b-25 cluster targets β-TRCP2, increases the expression of Snail and enhances cell migration and invasion in H1299 (non small cell lung cancer) cells. Biochem Biophys Res Commun 2013;434(4):841-7. Go to original source... Go to PubMed...
  171. Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 2008;8(6):438-49. Go to original source... Go to PubMed...
  172. Yang L,, Yang J,, Li J,, Shen X,, Le Y,, Zhou C, Wang S, Zhang S, Xu D,, Gong Z,. MircoRNA-33a inhibits epithelial-to-mesenchymal transition and metastasis and could be a prognostic marker in non-small cell lung cancer. Sci Rep 2015;5:13677. Go to original source... Go to PubMed...
  173. Qin Q, Xu Y, He T, Qin C, Xu J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res 2012;22(1):90-106. Go to original source... Go to PubMed...
  174. Higashijima J, Kurita N, Miyatani T, Yoshikawa K, Morimoto S, Nishioka M, Iwata T, Shimada M. Expression of histone deacetylase 1 and metastasis-associated protein 1 as prognostic factors in colon cancer. Oncol Rep 2011;26(2):343-8. Go to PubMed...
  175. Zhang H, Zhu X, Li N, Li D, Sha Z, Zheng X, Wang H. miR-125a-3p targets MTA1 to suppress NSCLC cell proliferation, migration, and invasion. Acta Biochim Biophys Sin (Shanghai) 2015;47(7):496-503. Go to original source... Go to PubMed...
  176. Sasaki H, Moriyama S, Nakashima Y, Kobayashi Y, Yukiue H, Kaji M, Fukai I, Kiriyama M, Yamakawa Y, Fujii Y. Expression of the MTA1 mRNA in advanced lung cancer. Lung Cancer 2002;35(2):149-54. Go to original source... Go to PubMed...
  177. Li DQ, Pakala SB, Nair SS, Eswaran J, Kumar R. Metastasis-associated protein 1/nucleosome remodelling and histone deacetylase complex in cancer. Cancer Res 2012;72(2):387-94. Go to original source... Go to PubMed...
  178. Wang W, Wu X, Tian Y. Crosstalk of AP4 and TGFβ receptor signalling in NSCLC. Tumour Biol 2015;36(1):447-52. Go to original source... Go to PubMed...
  179. Gong H, Han S, Yao H, Zhao H, Wang Y. AP 4 predicts poor prognosis in non small cell lung cancer. Mol Med Rep 2014;10(1):336-40. Go to original source... Go to PubMed...
  180. Gao F, Wang T, Zhang Z, Wang R, Guo Y, Liu J. Regulation of activating protein-4-associated metastases of non-small cell lung cancer cells by miR-144. Tumour Biol 2015 Aug 08 [Epub ahead of print] doi: 10.1007/s13277-015-3866-4. Go to original source...
  181. Yang T, Chen T, Li Y, Gao L, Zhang S, Wang T, Chen M. Downregulation of miR-25 modulates non-small cell lung cancer cells by targeting CDC42. Tumour Biol 2015;36(3):1903-11. Go to original source... Go to PubMed...
  182. Fidyk N, Wang JB, Cerione RA. Influencing cellular transformation by modulating the rates of GTP hydrolysis by Cdc42. Biochemistry 2006;45(25):7750-62. Go to original source... Go to PubMed...
  183. Zhang JY, Zhang D, Wang EH. Overexpression of small GTPases directly correlates with expression of d-catenin and their coexpression predicts a poor clinical outcome in nonsmall cell lung cancer. Mol Carcinog 2013;52(5):338-47. Go to original source... Go to PubMed...
  184. Li D, Yang Y, Zhu G, Liu X, Zhao M, Li X, Yang Q. MicroRNA-410 promotes cell proliferation by targeting BRD7 in non-small cell lung cancer. FEBS Lett 2015;589(17):2218-23. Go to original source... Go to PubMed...
  185. Park YA, Lee JW, Kim HS, Lee YY, Kim TJ, Choi CH, Choi JJ, Jeon HK, Cho YJ, Ryu JY, Kim BG, Bae DS. Tumour suppressive effects of bromodomain-containing protein 7 (BRD7) in epithelial ovarian carcinoma. Clin Cancer Res 2014;20(3):565-75. Go to original source... Go to PubMed...
  186. Wu WJ, Hu KS, Chen DL, Zeng ZL, Luo HY, Wang F, Wang DS, Wang ZQ, He F, Xu RH. Prognostic relevance of BRD7 expression in colorectal carcinoma. Eur J Clin Invest 2013;43(2):131-40. Go to original source... Go to PubMed...
  187. Hu K, Liao D, Wu W, Han AJ, Shi HJ, Wang F, Wang X, Zhong L, Duan T, Wu Y, Cao J, Tang J, Sang Y, Wang L, Lv X, Xu S, Zhang RH, Deng WG, Li SP, Zeng YX, Kang T. Targeting the anaphase-promoting complex/cyclosome (APC/C)- bromodomain containing 7 (BRD7) pathway for human osteosarcoma. Oncotarget 2014;5(10):3088-100. Go to original source... Go to PubMed...
  188. Chen L, Yu F. [Expression and clinical significance of bromodomain-containing protein 7 in non-small cell lung cancer]. Zhongguo Fei Ai Za Zhi 2011;14(10):830-4. Go to PubMed...
  189. Drost J, Mantovani F, Tocco F, Elkon R, Comel A, Holstege H, Kerkhoven R, Jonkers J, Voorhoeve PM, Agami R, Del Sal G. BRD7 is a candidate tumour suppressor gene required for p53 function. Nat Cell Biol 2010;12(4):380-9. Go to original source... Go to PubMed...
  190. Peng C, Liu HY, Zhou M, Zhang LM, Li XL, Shen SR, Li GY. BRD7 suppresses the growth of Nasopharyngeal Carcinoma cells (HNE1) through negatively regulating beta-catenin and ERK pathways. Mol Cell Biochem 2007;303(1-2):141-96. Go to original source... Go to PubMed...
  191. Chiu YH, Lee JY, Cantley LC. BRD7, a tumour suppressor, interacts with p85a and regulates PI3K activity. Mol Cell 2014;54(1):193-202. Go to original source... Go to PubMed...