Biomedical papers, 2016 (vol. 160), issue 3

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016, 160(3):317-326 | 10.5507/bp.2016.039

Human gut microbiota plays a role in the metabolism of drugs

Lenka Jourovaa, Pavel Anzenbacherb, Eva Anzenbacherovaa
a Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry and Faculty Hospital Olomouc, Palacky University Olomouc, Czech Republic
b Department of Pharmacology, Faculty of Medicine and Dentistry and Faculty Hospital Olomouc, Palacky University Olomouc, Czech Republic

Background and Aims: The gut microbiome, an aggregate genome of trillions of microorganisms residing in the human gastrointestinal tract, is now known to play a critical role in human health and predisposition to disease. It is also involved in the biotransformation of xenobiotics and several recent studies have shown that the gut microbiota can affect the pharmacokinetics of orally taken drugs with implications for their oral bioavailability.

Methods: Review of Pubmed, Web of Science and Science Direct databases for the years 1957-2016.

Results and Conclusions: Recent studies make it clear that the human gut microbiota can play a major role in the metabolism of xenobiotics and, the stability and oral bioavailability of drugs. Over the past 50 years, more than 30 drugs have been identified as a substrate for intestinal bacteria. Questions concerning the impact of the gut microbiota on drug metabolism, remain unanswered or only partially answered, namely (i) what are the molecular mechanisms and which bacterial species are involved? (ii) What is the impact of host genotype and environmental factors on the composition and function of the gut microbiota, (iii) To what extent is the composition of the intestinal microbiome stable, transmissible, and resilient to perturbation? (iv) Has past exposure to a given drug any impact on future microbial response, and, if so, for how long? Answering such questions should be an integral part of pharmaceutical research and personalised health care.

Keywords: microbiome, metabolism of drugs, gut microbiota, bioavailability, cytochromes P450

Received: April 26, 2016; Accepted: July 13, 2016; Prepublished online: August 2, 2016; Published: September 20, 2016


References

  1. Turnbaugh PJ, Stintzi A. Human health and disease in a microbial world. Front Microbiol 2011;2. Go to original source... Go to PubMed...
  2. Hill MJ. Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 1997;6 Suppl 1:S43-5. Go to original source... Go to PubMed...
  3. Viggiano D, Ianiro G, Vanella G, Bibbo S, Bruno G, Simeone G, Mele G. Gut barrier in health and disease: focus on childhood. Eur Rev Med Pharmacol Sci 2015;19(6):1077-85. Go to PubMed...
  4. Zhan Y, Chen PJ, Sadler WD, Wang F, Poe S, Nunez G, Eaton KA, Chen GY. Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury. Cancer Res 2013;73(24):7199-210. Go to original source... Go to PubMed...
  5. Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc 2003;62(1):67-72. Go to original source... Go to PubMed...
  6. Ferreira CM, Vieira AT, Vinolo MA, Oliveira FA, Curi R, Martins Fdos S. The central role of the gut microbiota in chronic inflammatory diseases. J Immunol Res 2014;2014:689492. Go to PubMed...
  7. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Krogh Pedersen H, Arumugam M, Kristiansen K, Voigt AY, Vestergaard H, Hercog R, Igor Costea P, Kultima JR, Li J, Jorgensen T, Levenez F, Dore J, Nielsen HB, Brunak S, Raes J, Hansen T, Wang J, Ehrlich SD, Bork P, Pedersen O. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015;528(7581):262-6. Go to original source... Go to PubMed...
  8. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WHW, Bushman FD, Lusis AJ, Hazen SL. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013;19(5):576-85. Go to original source... Go to PubMed...
  9. Singh V, Yeoh BS, Vijay-Kumar M. Gut microbiome as a novel cardiovascular therapeutic target. Current Opinion in Pharmacology 2016;27:8-12. Go to original source... Go to PubMed...
  10. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res 2013;69(1):52-60. Go to original source... Go to PubMed...
  11. Stojanèeviæ M, Bojiæ G, Al-Salami H, Mikov M. The influence of intestinal tract and probiotics on the fate of orally administered drugs. Curr Issues Mol Biol 2013;4(16):2.
  12. Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 2013;152(1):39-50. Go to original source... Go to PubMed...
  13. Shamat MA. The role of the gastrointestinal microflora in the metabolism of drugs. International journal of pharmaceutics 1993;97(1):1-13. Go to original source...
  14. Mikov M. The metabolism of drugs by the gut flora. European journal of drug metabolism and pharmacokinetics 1994;19(3):201-07. Go to original source... Go to PubMed...
  15. Al-Hilal TA, Alam F, Byun Y. Oral drug delivery systems using chemical conjugates or physical complexes. Adv Drug Deliv Rev 2013;65(6):845-64. Go to original source... Go to PubMed...
  16. Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature 2012;486(7402):207-14. Go to original source... Go to PubMed...
  17. Miller TL, Wolin M. Methanogens in human and animal intestinal tracts. Systematic and applied microbiology 1986;7(2):223-29. Go to original source...
  18. Zhang T, Breitbart M, Lee WH, Run JQ, Wei CL, Soh SW, Hibberd ML, Liu ET, Rohwer F, Ruan Y. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol 2006;4(1):e3. Go to original source... Go to PubMed...
  19. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. science 2005;307(5717):1915-20. Go to original source... Go to PubMed...
  20. Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP, Ugarte E, Muñoz-Tamayo R, Paslier DL, Nalin R. Towards the human intestinal microbiota phylogenetic core. Environmental microbiology 2009;11(10):2574-84. Go to original source... Go to PubMed...
  21. Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC. The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial ecology in health and disease 2015;26.
  22. Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C. Mode of delivery affects the bacterial community in the newborn gut. Early Human Development 2010;86(1, Supplement):13-15. Go to original source... Go to PubMed...
  23. Tojo R, Suarez A, Clemente MG, de los Reyes-Gavilan CG, Margolles A, Gueimonde M, Ruas-Madiedo P. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J Gastroenterol 2014;20(41):15163-76. Go to original source... Go to PubMed...
  24. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto J-M, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J, Weissenbach J, Ehrlich SD, Bork P. Enterotypes of the human gut microbiome. Nature 2011;473(7346):174-80. Go to original source... Go to PubMed...
  25. Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences 2011;108(Supplement 1):4586-91. Go to original source...
  26. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proceedings of the National Academy of Sciences 2011;108(Supplement 1):4554-61. Go to original source...
  27. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O'Sullivan O. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012;488(7410):178-84. Go to PubMed...
  28. Manichanh C, Reeder J, Gibert P, Varela E, Llopis M, Antolin M, Guigo R, Knight R, Guarner F. Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome research 2010;20(10):1411-19. Go to original source... Go to PubMed...
  29. Shashkova T, Popenko A, Tyakht A, Peskov K, Kosinsky Y, Bogolubsky L, Raigorodskii A, Ischenko D, Alexeev D, Govorun V. Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations. PLoS ONE 2016;11(2):e0148386. Go to original source... Go to PubMed...
  30. Pérez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A, Eismann K, Otto W, Rojo D, Bargiela R, von Bergen M. Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 2013;62(11):1591-601. Go to original source... Go to PubMed...
  31. Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. The ISME journal 2007;1(1):56-66. Go to original source... Go to PubMed...
  32. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 2011;108 Suppl 1:4554-61. Go to original source... Go to PubMed...
  33. De La Cochetiere MF, Durand T, Lepage P, Bourreille A, Galmiche JP, Dore J. Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J Clin Microbiol 2005;43(11):5588-92. Go to original source... Go to PubMed...
  34. Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol 2016;12(3):154-67. Go to original source... Go to PubMed...
  35. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005;102(31):11070-5. Go to original source... Go to PubMed...
  36. Panzer AR, Lynch SV. Influence and effect of the human microbiome in allergy and asthma. Curr Opin Rheumatol 2015;27(4):373-80. Go to original source... Go to PubMed...
  37. Huang YJ, Boushey HA. The microbiome in asthma. J Allergy Clin Immunol 2015;135(1):25-30. Go to original source... Go to PubMed...
  38. Legatzki A, Rosler B, von Mutius E. Microbiome diversity and asthma and allergy risk. Curr Allergy Asthma Rep 2014;14(10):466. Go to original source... Go to PubMed...
  39. O'Toole PW, Jeffery IB. Gut microbiota and aging. Science 2015;350(6265):1214-5. Go to original source... Go to PubMed...
  40. Zapata HJ, Quagliarello VJ. The microbiota and microbiome in aging: potential implications in health and age-related diseases. J Am Geriatr Soc 2015;63(4):776-81. Go to original source... Go to PubMed...
  41. Kelly JR, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbiota axis: challenges for translation in psychiatry. Ann Epidemiol 2016.
  42. Mangiola F, Ianiro G, Franceschi F, Fagiuoli S, Gasbarrini G, Gasbarrini A. Gut microbiota in autism and mood disorders. World J Gastroenterol 2016;22(1):361-8. Go to original source... Go to PubMed...
  43. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J-M, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464(7285):59-65. Go to original source... Go to PubMed...
  44. Scheline RR. Drug metabolism by intestinal microorganisms. J Pharm Sci 1968;57(12):2021-37. Go to original source... Go to PubMed...
  45. Scheline RR. Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol Rev 1973;25(4):451-523. Go to PubMed...
  46. Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm 2008;363(1):1-25. Go to original source... Go to PubMed...
  47. Saad R, Rizkallah MR, Aziz RK. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathogens 2012;4(1):1-13. Go to original source... Go to PubMed...
  48. Li H, He J, Jia W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol 2016;12(1):31-40. Go to original source... Go to PubMed...
  49. Kang MJ, Kim HG, Kim JS, Oh do G, Um YJ, Seo CS, Han JW, Cho HJ, Kim GH, Jeong TC, Jeong HG. The effect of gut microbiota on drug metabolism. Expert Opin Drug Metab Toxicol 2013;9(10):1295-308. Go to original source... Go to PubMed...
  50. Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm 2008;363. Go to original source... Go to PubMed...
  51. Saad R, Rizkallah MR, Aziz RK. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathog 2012;4(1):16. Go to original source... Go to PubMed...
  52. Yoo DH, Kim IS, Van Le TK, Jung IH, Yoo HH, Kim DH. Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab Dispos 2014;42(9):1508-13. Go to original source... Go to PubMed...
  53. Yoo HH, Kim IS, Yoo DH, Kim DH. Effects of orally administered antibiotics on the bioavailability of amlodipine: gut microbiota-mediated drug interaction. J Hypertens 2016;34(1):156-62. Go to original source... Go to PubMed...
  54. Fuller AT. Is p-aminobenzenesulphonamide the active agent in prontosil therapy? Lancet 1937;1:194-98. Go to original source...
  55. Fouts JR, Kamm JJ, Brodie BB. Enzymatic reduction of prontosil and other azo dyes. J Pharmacol Exp Ther 1957;120(3):291-300. Go to PubMed...
  56. Gingell R, Bridges JW, Williams RT. The Role of the Gut Flora in the Metabolism of Prontosil and Neoprontosil in the Rat. Xenobiotica 1971;1(2):143-56. Go to original source... Go to PubMed...
  57. Das KM, Eastwood MA, McManus JPA, Sircus W. The metabolism of salicylazosulphapyridine in ulcerative colitis: I The relationship between metabolites and the response to treatment in inpatients. Gut 1973;14(8):631-36. Go to original source... Go to PubMed...
  58. Peppercorn MA, Goldman P. The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J Pharmacol Exp Ther 1972;181(3):555-62. Go to PubMed...
  59. Peppercorn MA, Goldman P. Distribution studies of salicylazosulfapyridine and its metabolites. Gastroenterology 1973;64(2):240-5. Go to PubMed...
  60. Chan RP, Pope DJ, Gilbert AP, Sacra PJ, Baron JH, Lennard-Jones JE. Studies of two novel sulfasalazine analogs, ipsalazide and balsalazide. Dig Dis Sci 1983;28(7):609-15. Go to original source... Go to PubMed...
  61. Wadworth AN, Fitton A. Olsalazine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in inflammatory bowel disease. Drugs 1991;41(4):647-64. Go to original source... Go to PubMed...
  62. Nambara S, Yamaha T. [Comparison of bacterial and microsomal azo- and nitro-reductases (author's transl)]. Yakugaku Zasshi 1975;95(11):1302-6. Go to original source... Go to PubMed...
  63. Takeno S, Sakai T. Involvement of the intestinal microflora in nitrazepam-induced teratogenicity in rats and its relationship to nitroreduction. Teratology 1991;44(2):209-14. Go to original source... Go to PubMed...
  64. Takeno S, Hirano Y, Kitamura A, Sakai T. Comparative developmental toxicity and metabolism of nitrazepam in rats and mice. Toxicology and applied pharmacology 1993;121(2):233-38. Go to original source... Go to PubMed...
  65. Rafii F, Sutherland JB, Hansen EB, Jr., Cerniglia CE. Reduction of nitrazepam by Clostridium leptum, a nitroreductase-producing bacterium isolated from the human intestinal tract. Clin Infect Dis 1997;25 Suppl 2:S121-2. Go to original source... Go to PubMed...
  66. Elmer GW, Remmel RP. Role of the intestinal microflora in clonazepam metabolism in the rat. Xenobiotica 1984;14(11):829-40. Go to original source... Go to PubMed...
  67. Koch RL, Beaulieu BB, Jr., Goldman P. Role of the intestinal flora in the metabolism of misonidazole. Biochem Pharmacol 1980;29(24):3281-4. Go to original source... Go to PubMed...
  68. Strong HA, Renwick AG, George CF, Liu YF, Hill MJ. The reduction of sulphinpyrazone and sulindac by intestinal bacteria. Xenobiotica 1987;17(6):685-96. Go to original source... Go to PubMed...
  69. Watanabe K, Yamashita S, Furuno K, Kawasaki H, Gomita Y. Metabolism of omeprazole by gut flora in rats. J Pharm Sci 1995;84(4):516-7. Go to original source... Go to PubMed...
  70. Basit AW, Lacey LF. Colonic metabolism of ranitidine: implications for its delivery and absorption. Int J Pharm 2001;227(1-2):157-65. Go to original source... Go to PubMed...
  71. Basit AW, Podczeck F, Newton JM, Waddington WA, Ell PJ, Lacey LF. The use of formulation technology to assess regional gastrointestinal drug absorption in humans. Eur J Pharm Sci 2004;21(2-3):179-89. Go to original source... Go to PubMed...
  72. Basit AW, Newton JM, Lacey LF. Susceptibility of the H2-receptor antagonists cimetidine, famotidine and nizatidine, to metabolism by the gastrointestinal microflora. Int J Pharm 2002;237(1-2):23-33. Go to original source... Go to PubMed...
  73. Machavaram KK, Gundu J, Yamsani MR. Effect of ketoconazole and rifampicin on the pharmacokinetics of ranitidine in healthy human volunteers: a possible role of P-glycoprotein. Drug Metabol Drug Interact 2006;22(1):47-65. Go to original source... Go to PubMed...
  74. Greenblatt DJ, Smith TW, Koch-Weser J. Bioavailability of drugs: the digoxin dilemma. Clin Pharmacokinet 1976;1(1):36-51. Go to original source... Go to PubMed...
  75. Lindenbaum J, Rund DG, Butler VP, Jr., Tse-Eng D, Saha JR. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med 1981;305(14):789-94. Go to original source... Go to PubMed...
  76. Magnusson JO, Bergdahl B, Bogentoft C, Jonsson UE. Metabolism of digoxin and absorption site. Br J Clin Pharmacol 1982;14(2):284-5. Go to original source... Go to PubMed...
  77. Kitamura S, Sugihara K, Kuwasako M, Tatsumi K. The role of mammalian intestinal bacteria in the reductive metabolism of zonisamide. J Pharm Pharmacol 1997;49(3):253-6. Go to original source... Go to PubMed...
  78. Nobilis M, Mikusek J, Szotakova B, Jirasko R, Holcapek M, Chamseddin C, Jira T, Kucera R, Kunes J, Pour M. Analytical power of LLE-HPLC-PDA-MS/MS in drug metabolism studies: identification of new nabumetone metabolites. J Pharm Biomed Anal 2013;80:164-72. Go to original source... Go to PubMed...
  79. Hedner T, Samulesson O, Wahrborg P, Wadenvik H, Ung KA, Ekbom A. Nabumetone: therapeutic use and safety profile in the management of osteoarthritis and rheumatoid arthritis. Drugs 2004;64(20):2315-43; discussion 44-5. Go to original source... Go to PubMed...
  80. Jourova L AP, Matuskova Z, Nobilis M, Vecera R, Tlaskalova-Hogenova H, Kverka M, Kolar M, Anzenbacherova E. Imipenem, a carbapenem type antibiotic, does not alter pharmacokinetics of a model drug nabumetone. Toxicol Lett 2015;238:S332. Go to original source...
  81. Koch RL, Goldman P. The anaerobic metabolism of metronidazole forms N-(2-hydroxyethyl)-oxamic acid. J Pharmacol Exp Ther 1979;208(3):406-10. Go to PubMed...
  82. Koch RL, Chrystal EJ, Beaulieu BB, Jr., Goldman P. Acetamide--a metabolite of metronidazole formed by the intestinal flora. Biochem Pharmacol 1979;28(24):3611-5. Go to original source... Go to PubMed...
  83. Kock RL, Beaulieu BB, Jr., Chrystal EJ, Goldman P. A metronidazole metabolite in human urine and its risk. Science 1981;211(4480):398-400. Go to original source... Go to PubMed...
  84. Pierce D, Corcoran M, Martin P, Barrett K, Inglis S, Preston P, Thompson TN, Willsie SK. Effect of MMX(R) mesalamine coadministration on the pharmacokinetics of amoxicillin, ciprofloxacin XR, metronidazole, and sulfamethoxazole: results from four randomized clinical trials. Drug Des Devel Ther 2014;8:529-43. Go to original source... Go to PubMed...
  85. Okuda H, Ogura K, Kato A, Takubo H, Watabe T. A possible mechanism of eighteen patient deaths caused by interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs. J Pharmacol Exp Ther 1998;287(2):791-9. Go to PubMed...
  86. Nakayama H, Kinouchi T, Kataoka K, Akimoto S, Matsuda Y, Ohnishi Y. Intestinal anaerobic bacteria hydrolyse sorivudine, producing the high blood concentration of 5-(E)-(2-bromovinyl)uracil that increases the level and toxicity of 5-fluorouracil. Pharmacogenetics 1997;7(1):35-43. Go to original source... Go to PubMed...
  87. Ashida N, Ijichi K, Watanabe Y, Machida H. Metabolism of 5'-ether prodrugs of 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil in rats. Biochem Pharmacol 1993;46(12):2201-7. Go to original source... Go to PubMed...
  88. Elkington SG, Floch MH, Conn HO. Lactulose in the Treatment of Chronic Portal-Systemic Encephalopathy. New England Journal of Medicine 1969;281(8):408-12. Go to original source... Go to PubMed...
  89. Goldin BR, Peppercorn MA, Goldman P. Contributions of host and intestinal microflora in the metabolism of L-dopa by the rat. J Pharmacol Exp Ther 1973;186(1):160-6. Go to PubMed...
  90. Smith G, Griffiths L. Metabolism of N-acylated and O-alkylated drugs by the intestinal microflora during anaerobic incubation in vitro. Xenobiotica 1974;4(8):477-87. Go to original source... Go to PubMed...
  91. Dull BJ, Salata K, Goldman P. Role of the intestinal flora in the acetylation of sulfasalazine metabolites. Biochem Pharmacol 1987;36(21):3772-4. Go to original source... Go to PubMed...
  92. van Hogezand RA, Kennis HM, van Schaik A, Koopman JP, van Hees PA, van Tongeren JH. Bacterial acetylation of 5-aminosalicylic acid in faecal suspensions cultured under aerobic and anaerobic conditions. Eur J Clin Pharmacol 1992;43(2):189-92. Go to original source... Go to PubMed...
  93. Delomenie C, Fouix S, Longuemaux S, Brahimi N, Bizet C, Picard B, Denamur E, Dupret JM. Identification and functional characterization of arylamine N-acetyltransferases in eubacteria: evidence for highly selective acetylation of 5-aminosalicylic acid. J Bacteriol 2001;183(11):3417-27. Go to original source... Go to PubMed...
  94. Shu YZ, Kingston DG, Van Tassell RL, Wilkins TD. Metabolism of levamisole, an anti-colon cancer drug, by human intestinal bacteria. Xenobiotica 1991;21(6):737-50. Go to original source... Go to PubMed...
  95. He H, Richardson JS. A pharmacological, pharmacokinetic and clinical overview of risperidone, a new antipsychotic that blocks serotonin 5-HT2 and dopamine D2 receptors. Int Clin Psychopharmacol 1995;10(1):19-30. Go to original source... Go to PubMed...
  96. Meuldermans W, Hendrickx J, Mannens G, Lavrijsen K, Janssen C, Bracke J, Le Jeune L, Lauwers W, Heykants J. The metabolism and excretion of risperidone after oral administration in rats and dogs. Drug Metab Dispos 1994;22(1):129-38. Go to PubMed...
  97. Baciewicz AM, Chrisman CR, Finch CK, Self TH. Update on rifampin, rifabutin, and rifapentine drug interactions. Curr Med Res Opin 2013;29(1):1-12. Go to original source... Go to PubMed...
  98. Vermes A, Kuijper EJ, Guchelaar HJ, Dankert J. An in vitro study on the active conversion of flucytosine to fluorouracil by microorganisms in the human intestinal microflora. Chemotherapy 2003;49(1-2):17-23. Go to original source... Go to PubMed...
  99. Greenspan MD, Yudkovitz JB, Alberts AW, Argenbright LS, Arison BH, Smith JL. Metabolism of lovastatin by rat and human liver microsomes in vitro. Drug Metab Dispos 1988;16(5):678-82. Go to PubMed...
  100. Endo A, Yamashita H, Naoki H, Iwashita T, Mizukawa Y. Microbial phosphorylation of compactin (ML-236B) and related compounds. J Antibiot (Tokyo) 1985;38(3):328-32. Go to original source... Go to PubMed...
  101. Serizawa N, Nakagawa K, Tsujita Y, Terahara A, Kuwano H, Tanaka M. 6 alpha-Hydroxy-iso-ML-236B (6 alpha-hydroxy-iso-compactin) and ML-236A, microbial transformation products of ML-236B. J Antibiot (Tokyo) 1983;36(7):918-20. Go to original source... Go to PubMed...
  102. Serizawa N, Nakagawa K, Tsujita Y, Terahara A, Kuwano H. 3 alpha-Hydroxy-ML-236B (3 alpha-hydroxycompactin), microbial transformation product of ML-236B (compactin). J Antibiot (Tokyo) 1983;36(5):608-10. Go to original source... Go to PubMed...
  103. Holt R. The bacterial degradation of chloramphenicol. Lancet 1967;1(7502):1259-60. Go to original source... Go to PubMed...
  104. Prescott LF. Kinetics and metabolism of paracetamol and phenacetin. Br J Clin Pharmacol 1980;10 Suppl 2:291S-98S. Go to original source... Go to PubMed...
  105. Lau GS, Critchley JA. The estimation of paracetamol and its major metabolites in both plasma and urine by a single high-performance liquid chromatography assay. J Pharm Biomed Anal 1994;12(12):1563-72. Go to original source... Go to PubMed...
  106. Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A 2009;106(34):14728-33. Go to original source... Go to PubMed...