Biomedical papers, 2016 (vol. 160), issue 2

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016, 160(2):173-182 | 10.5507/bp.2016.012

Proteomic approaches to the study of renal mitochondria

Zdenek Tumaa, Jitka Kuncovaa,b, Jan Maresa,c, Martina Grundmanovaa,b, Martin Matejovica,c
a Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
b Department of Physiology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
c Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University in Prague and Teaching Hospital, Pilsen, Czech Republic

Background and Aims: Dysfunction of kidney mitochondria plays a critical role in the pathogenesis of a number of renal diseases. Proteomics represents an untargeted attempt to reveal the remodeling of mitochondrial proteins during disease. Combination of separation methods and mass spectrometry allows identification and quantitative analysis of mitochondrial proteins including protein complexes. The aim of this review is to summarize the methods and applications of proteomics to renal mitochondria.

Methods: Using keywords "mitochondria", "kidney", "proteomics", scientific databases (PubMed and Web of knowledge) were searched from 2000 to August 2015 for articles describing methods and applications of proteomics to analysis of mitochondrial proteins in kidney. Included were publications on mitochondrial proteins in kidneys of humans and animal model in health and disease.

Results and Conclusion: Proteomics of renal mitochondria has been/is mostly used in diabetes, hypertension, acidosis, nephrotoxicity and renal cancer. Integration of proteomics with other methods for examining protein activity is promising for insight into the role of renal mitochondria in pathological states. Several challenges were identified: selection of appropriate model organism, sensitivity of analytical methods and analysis of mitochondrial proteome in different renal zones/biopsies in the course of various kidney disorders.

Keywords: renal mitochondria, proteomics, gel electrophoresis, liquid chromatography-mass spectrometry, diabetes, acidosis, nephrotoxicity, renal cancer

Received: October 12, 2015; Accepted: March 3, 2016; Prepublished online: March 17, 2016; Published: June 24, 2016


References

  1. Ernster L, Schatz G. Mitochondria: a historical review. The Journal of cell biology 1981;91(3 Pt 2):227s-255s. Go to original source... Go to PubMed...
  2. Dedkova EN, Blatter LA. Mitochondrial Ca2+ and the heart. Cell calcium 2008;44(1):77-91. Go to original source... Go to PubMed...
  3. Murphy MP. How mitochondria produce reactive oxygen species. The Biochemical journal 2009;417(1):1-13. Go to original source... Go to PubMed...
  4. Nisoli E, Carruba MO. Nitric oxide and mitochondrial biogenesis. Journal of cell science 2006;119(Pt 14):2855-62. Go to original source... Go to PubMed...
  5. Kroemer G, Reed JC. Mitochondrial control of cell death. Nature medicine 2000;6(5):513-19. Go to original source... Go to PubMed...
  6. Yasuda M, Fujita T, Higashio T, Okahara T, Abe Y, Yamamoto K. Effects of 4-pentenoic acid and furosemide on renal functions and renal uptake of individual free fatty acids. Pflugers Archiv : European journal of physiology 1980;385(2):111-6. Go to original source... Go to PubMed...
  7. Che R, Yuan Y, Huang S, Zhang A. Mitochondrial dysfunction in the pathophysiology of renal diseases. American journal of physiology. Renal physiology 2014;306(4):F367-78. Go to original source... Go to PubMed...
  8. Funk JA, Schnellmann RG. Persistent disruption of mitochondrial homeostasis after acute kidney injury. American journal of physiology. Renal physiology 2012;302(7):F853-64. Go to original source... Go to PubMed...
  9. Gomez H, Ince C, De Backer D, Pickkers P, Payen D, Hotchkiss J, Kellum JA. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock 2014;41(1):3-11. Go to original source... Go to PubMed...
  10. Hall AM. Maintaining mitochondrial morphology in AKI: looks matter. Journal of the American Society of Nephrology 2013;24(8):1185-7. Go to original source... Go to PubMed...
  11. Stallons LJ, Funk JA, Schnellmann RG. Mitochondrial Homeostasis in Acute Organ Failure. Current pathobiology reports 2013;1(3):169-77. Go to original source...
  12. Daehn I, Casalena G, Zhang T, Shi S, Fenninger F, Barasch N, Yu L, D'Agati V, Schlondorff D, Kriz W, Haraldsson B, Bottinger EP. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. The Journal of clinical investigation 2014;124(4):1608-21. Go to original source... Go to PubMed...
  13. Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria in cancer cells: what is so special about them? Trends in cell biology 2008;18(4):165-73. Go to original source... Go to PubMed...
  14. Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicology and applied pharmacology 2006;212(2):167-78. Go to original source... Go to PubMed...
  15. Rosca MG, Mustata TG, Kinter MT, Ozdemir AM, Kern TS, Szweda LI, Brownlee M, Monnier VM, Weiss MF. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. American journal of physiology. Renal physiology 2005;289(2):F420-30. Go to original source... Go to PubMed...
  16. Izzedine H, Launay-Vacher V, Deray G. Antiviral drug-induced nephrotoxicity. American journal of kidney diseases 2005;45(5):804-17. Go to original source... Go to PubMed...
  17. Patil NK, Parajuli N, MacMillan-Crow LA, Mayeux PR. Inactivation of renal mitochondrial respiratory complexes and manganese superoxide dismutase during sepsis: mitochondria-targeted antioxidant mitigates injury. American journal of physiology. Renal physiology 2014;306(7):F734-43. Go to original source... Go to PubMed...
  18. Papazova DA, Friederich-Persson M, Joles JA, Verhaar MC. Renal transplantation induces mitochondrial uncoupling, increased kidney oxygen consumption, and decreased kidney oxygen tension. American journal of physiology. Renal physiology 2015;308(1):F22-8. Go to original source... Go to PubMed...
  19. Saba H, Batinic-Haberle I, Munusamy S, Mitchell T, Lichti C, Megyesi J, MacMillan-Crow LA. Manganese porphyrin reduces renal injury and mitochondrial damage during ischemia/reperfusion. Free radical biology & medicine 2007;42(10):1571-8. Go to original source... Go to PubMed...
  20. Jiang Y, Wang X. Comparative mitochondrial proteomics: perspective in human diseases. Journal of hematology & oncology 2012;5:11. Go to original source...
  21. Peinado JR, Diaz-Ruiz A, Fruhbeck G, Malagon MM. Mitochondria in metabolic disease: getting clues from proteomic studies. Proteomics 2014;14(4-5):452-66. Go to original source... Go to PubMed...
  22. Chaiyarit S, Thongboonkerd V. Changes in mitochondrial proteome of renal tubular cells induced by calcium oxalate monohydrate crystal adhesion and internalization are related to mitochondrial dysfunction. Journal of proteome research 2012;11(6):3269-80. Go to original source... Go to PubMed...
  23. Guder WG, Ross BD. Enzyme distribution along the nephron. Kidney international 1984;26(2):101-11. Go to original source... Go to PubMed...
  24. Klein KL, Wang MS, Torikai S, Davidson WD, Kurokawa K. Substrate oxidation by isolated single nephron segments of the rat. Kidney international 1981;20(1):29-35. Go to original source... Go to PubMed...
  25. Doctor RB, Chen J, Peters LL, Lux SE, Mandel LJ. Distribution of epithelial ankyrin (Ank3) spliceoforms in renal proximal and distal tubules. The American journal of physiology 1998;274(1 Pt 2):F129-38. Go to PubMed...
  26. Walmsley SJ, Broeckling C, Hess A, Prenni J, Curthoys NP. Proteomic analysis of brush-border membrane vesicles isolated from purified proximal convoluted tubules. American journal of physiology. Renal physiology 2010;298(6):F1323-31. Go to original source... Go to PubMed...
  27. Yoshida Y, Miyazaki K, Kamiie J, Sato M, Okuizumi S, Kenmochi A, Kamijo K, Nabetani T, Tsugita A, Xu B, Zhang Y, Yaoita E, Osawa T, Yamamoto T. Two-dimensional electrophoretic profiling of normal human kidney glomerulus proteome and construction of an extensible markup language (XML)-based database. Proteomics 2005;5(4):1083-96. Go to original source... Go to PubMed...
  28. Graham JM. Isolation of mitochondria from tissues and cells by differential centrifugation. Current protocols in cell biology 2001;Chapter 3:Unit 3.3. Go to PubMed...
  29. Freund DM, Prenni JE, Curthoys NP. Response of the mitochondrial proteome of rat renal proximal convoluted tubules to chronic metabolic acidosis. American journal of physiology. Renal physiology 2013;304(2):F145-55. Go to original source... Go to PubMed...
  30. Reifschneider NH, Goto S, Nakamoto H, Takahashi R, Sugawa M, Dencher NA, Krause F. Defining the mitochondrial proteomes from five rat organs in a physiologically significant context using 2D blue-native/SDS-PAGE. Journal of proteome research 2006;5(5):1117-32. Go to original source... Go to PubMed...
  31. Graham JM. Purification of a crude mitochondrial fraction by density-gradient centrifugation. Current protocols in cell biology 2001;Chapter 3:Unit 3.4. Go to original source... Go to PubMed...
  32. Sims NR, Anderson MF. Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat. Protoc. 2008;3(7):1228-39. Go to original source... Go to PubMed...
  33. Raturi A, Simmen T. Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochimica et biophysica acta 2013;1833(1):213-24. Go to original source... Go to PubMed...
  34. Andreoli C, Prokisch H, Hortnagel K, Mueller JC, Munsterkotter M, Scharfe C, Meitinger T. MitoP2, an integrated database on mitochondrial proteins in yeast and man. Nucleic Acids Res 2004;32(Database issue):D459-62.
  35. Gaston D, Tsaousis AD, Roger AJ. Predicting proteomes of mitochondria and related organelles from genomic and expressed sequence tag data. Methods in enzymology 2009;457:21-47. Go to original source... Go to PubMed...
  36. Hartwig S, Feckler C, Lehr S, Wallbrecht K, Wolgast H, Muller-Wieland D, Kotzka J. A critical comparison between two classical and a kit-based method for mitochondria isolation. Proteomics 2009;9(11):3209-14. Go to original source... Go to PubMed...
  37. Eubel H, Lee CP, Kuo J, Meyer EH, Taylor NL, Millar AH. Free-flow electrophoresis for purification of plant mitochondria by surface charge. The Plant journal : for cell and molecular biology 2007;52(3):583-94. Go to original source... Go to PubMed...
  38. Hornig-Do HT, Gunther G, Bust M, Lehnartz P, Bosio A, Wiesner RJ. Isolation of functional pure mitochondria by superparamagnetic microbeads. Analytical biochemistry 2009;389(1):1-5. Go to original source... Go to PubMed...
  39. Lopez MF, Kristal BS, Chernokalskaya E, Lazarev A, Shestopalov AI, Bogdanova A, Robinson M. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis 2000;21(16):3427-40. Go to original source... Go to PubMed...
  40. Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, Wiley S, Murphy AN, Gaucher SP, Capaldi RA, Gibson BW, Ghosh SS. Characterization of the human heart mitochondrial proteome. Nature biotechnology 2003;21(3):281-6. Go to original source... Go to PubMed...
  41. Cecchini G. Function and structure of complex II of the respiratory chain. Annual review of biochemistry 2003;72:77-109. Go to original source... Go to PubMed...
  42. Hirst J. Why does mitochondrial complex I have so many subunits? The Biochemical journal 2011;437(2):e1-3. Go to original source... Go to PubMed...
  43. Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 1998;281(5373):64-71. Go to original source... Go to PubMed...
  44. Wittig I, Schagger H. Structural organization of mitochondrial ATP synthase. Biochimica et biophysica acta 2008;1777(7-8):592-8. Go to original source... Go to PubMed...
  45. Watmough NJ, Frerman FE. The electron transfer flavoprotein: ubiquinone oxidoreductases. Biochimica et biophysica acta 2010;1797(12):1910-6. Go to original source... Go to PubMed...
  46. Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 2013;339(6125):1328-31. Go to original source... Go to PubMed...
  47. Vogtle FN, Burkhart JM, Rao S, Gerbeth C, Hinrichs J, Martinou JC, Chacinska A, Sickmann A, Zahedi RP, Meisinger C. Intermembrane space proteome of yeast mitochondria. Molecular and cellular proteomics 2012;11(12):1840-52. Go to original source... Go to PubMed...
  48. Mathy G, Sluse FE. Mitochondrial comparative proteomics: strengths and pitfalls. Biochimica et biophysica acta 2008;1777(7-8):1072-7. Go to original source... Go to PubMed...
  49. Silvestri E, Lombardi A, Glinni D, Senese R, Cioffi F, Lanni A, Goglia F, Moreno M, de Lange P. Mammalian Mitochondrial Proteome And Its Functions: Current Investigative Techniques And Future Perspectives On Ageing And Diabetes. Journal of Integrated OMICS 2011;1(1):17-27.
  50. O'Connell K, Ohlendieck K. Proteomic DIGE analysis of the mitochondria-enriched fraction from aged rat skeletal muscle. Proteomics 2009;9(24):5509-24. Go to original source... Go to PubMed...
  51. Chevalier F. Highlights on the capacities of "Gel-based" proteomics. Proteome science 2010;8(1):23-32. Go to original source... Go to PubMed...
  52. Schagger H, von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Analytical biochemistry 1991;199(2):223-31. Go to original source... Go to PubMed...
  53. Wittig I, Schagger H. Features and applications of blue-native and clear-native electrophoresis. Proteomics 2008;8(19):3974-90. Go to original source... Go to PubMed...
  54. Nijtmans LG, Henderson NS, Holt IJ. Blue Native electrophoresis to study mitochondrial and other protein complexes. Methods 2002;26(4):327-34. Go to original source... Go to PubMed...
  55. Zhang X, Fang A, Riley CP, Wang M, Regnier FE, Buck C. Multi-dimensional liquid chromatography in proteomics--a review. Analytica chimica acta 2010;664(2):101-13. Go to original source... Go to PubMed...
  56. Sjodin MO, Wetterhall M, Kultima K, Artemenko K. Comparative study of label and label-free techniques using shotgun proteomics for relative protein quantification. Journal of chromatography B 2013;928:83-92. Go to original source...
  57. Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA. Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 2011;11(4):535-53. Go to original source... Go to PubMed...
  58. Aggarwal K, Choe LH, Lee KH. Shotgun proteomics using the iTRAQ isobaric tags. Briefings in Functional Genomics and Proteomics 2006;5(2):112-20. Go to original source... Go to PubMed...
  59. Zhou Y, Shan Y, Zhang L, Zhang Y. Recent advances in stable isotope labeling based techniques for proteome relative quantification. Journal of chromatography A 2014;1365:1-11. Go to original source... Go to PubMed...
  60. Tan S, Tan HT, Chung MC. Membrane proteins and membrane proteomics. Proteomics 2008;8(19):3924-32. Go to original source... Go to PubMed...
  61. Feist P, Hummon AB. Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. International journal of molecular sciences 2015;16(2):3537-63. Go to original source... Go to PubMed...
  62. Gahoi N, Ray S, Srivastava S. Array-based proteomic approaches to study signal transduction pathways: prospects, merits and challenges. Proteomics 2015;15(2-3):218-31. Go to original source... Go to PubMed...
  63. Pratsch K, Wellhausen R, Seitz H. Advances in the quantification of protein microarrays. Current Opinion in Chemical Biology 2014;18:16-20. Go to original source... Go to PubMed...
  64. Ramachandran N, Srivastava S, Labaer J. Applications of protein microarrays for biomarker discovery. Proteomics. Clinical applications 2008;2(10-11):1444-59. Go to original source... Go to PubMed...
  65. Liotta LA, Espina V, Mehta AI, Calvert V, Rosenblatt K, Geho D, Munson PJ, Young L, Wulfkuhle J, Petricoin EF, 3rd. Protein microarrays: meeting analytical challenges for clinical applications. Cancer cell 2003;3(4):317-25. Go to original source... Go to PubMed...
  66. Azzam S, Broadwater L, Li S, Freeman EJ, McDonough J, Gregory RB. A SELDI mass spectrometry study of experimental autoimmune encephalomyelitis: sample preparation, reproducibility, and differential protein expression patterns. Proteome science 2013;11(1):19. Go to original source... Go to PubMed...
  67. Broadwater L, Pandit A, Clements R, Azzam S, Vadnal J, Sulak M, Yong VW, Freeman EJ, Gregory RB, McDonough J. Analysis of the mitochondrial proteome in multiple sclerosis cortex. Biochimica et biophysica acta 2011;1812(5):630-41. Go to original source... Go to PubMed...
  68. Arthur JM, Thongboonkerd V, Scherzer JA, Cai J, Pierce WM, Klein JB. Differential expression of proteins in renal cortex and medulla: a proteomic approach. Kidney international 2002;62(4):1314-21. Go to original source... Go to PubMed...
  69. Zhang Y, Yoshida Y, Xu B, Magdeldin S, Fujinaka H, Liu Z, Miyamoto M, Yaoita E, Yamamoto T. Comparison of human glomerulus proteomic profiles obtained from low quantities of samples by different mass spectrometry with the comprehensive database. Proteome science 2011;9(1):47. Go to original source... Go to PubMed...
  70. Zhao Y, Denner L, Haidacher SJ, LeJeune WS, Tilton RG. Comprehensive analysis of the mouse renal cortex using two-dimensional HPLC - tandem mass spectrometry. Proteome science 2008;6(15):15. Go to original source... Go to PubMed...
  71. Xu B, Yoshida Y, Zhang Y, Yaoita E, Osawa T, Yamamoto T. Two-dimensional electrophoretic profiling of normal human kidney: differential protein expression in glomerulus, cortex and medulla. Journal of Electrophoresis 2005;49(1):5-13. Go to original source...
  72. Tuma Z, Kuncova J, Mares J, Matejovic M. Mitochondrial proteomes of porcine kidney cortex and medulla: foundation for translational proteomics. Clinical and Experimental Nephrology 2016;20(1):39-49. doi:10.1007/s10157-015-1135-x Go to original source... Go to PubMed...
  73. Techritz S, Lutzkendorf S, Bazant E, Becker S, Klose J, Schuelke M. Quantitative and qualitative 2D electrophoretic analysis of differentially expressed mitochondrial proteins from five mouse organs. Proteomics 2013;13(1):179-95. Go to original source... Go to PubMed...
  74. Johnson DT, Harris RA, French S, Blair PV, You J, Bemis KG, Wang M, Balaban RS. Tissue heterogeneity of the mammalian mitochondrial proteome. American journal of physiology. Cell physiology 2007;292(2):C689-97. Go to original source... Go to PubMed...
  75. Johnson DT, Harris RA, Blair PV, Balaban RS. Functional consequences of mitochondrial proteome heterogeneity. American journal of physiology. Cell physiology 2007;292(2):C698-707. Go to original source... Go to PubMed...
  76. Giraud S, Favreau F, Chatauret N, Thuillier R, Maiga S, Hauet T. Contribution of large pig for renal ischemia-reperfusion and transplantation studies: the preclinical model. Journal of biomedicine & biotechnology 2011;2011:532127. Go to original source...
  77. Amado FM, Barros A, Azevedo AL, Vitorino R, Ferreira R. An integrated perspective and functional impact of the mitochondrial acetylome. Expert Review of Proteomics 2014;11(3):383-94. Go to original source... Go to PubMed...
  78. Gianazza E, Eberini I, Sensi C, Barile M, Vergani L, Vanoni MA. Energy matters: Mitochondrial proteomics for biomedicine. Proteomics 2011;11(4):657-74. Go to original source... Go to PubMed...
  79. Gregersen N, Hansen J, Palmfeldt J. Mitochondrial proteomics--a tool for the study of metabolic disorders. Journal of inherited metabolic disease 2012;35(4):715-26. Go to original source... Go to PubMed...
  80. Lau E, Huang D, Cao Q, Dincer TU, Black CM, Lin AJ, Lee JM, Wang D, Liem DA, Lam MP, Ping P. Spatial and temporal dynamics of the cardiac mitochondrial proteome. Expert Review of Proteomics 2015;12(2):133-46. Go to original source... Go to PubMed...
  81. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008;57(6):1446-54. Go to original source... Go to PubMed...
  82. Kashihara N, Haruna Y, Kondeti VK, Kanwar YS. Oxidative stress in diabetic nephropathy. Current Medicinal Chemistry 2010;17(34):4256-69. Go to original source... Go to PubMed...
  83. Tilton RG, Haidacher SJ, LeJeune WS, Zhang XQ, Zhao YX, Kurosky A, Brasier AR, Denner L. Diabetes-induced changes in the renal cortical proteome assessed with two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2007;7(10):1729-42. Go to original source... Go to PubMed...
  84. Bugger H, Chen D, Riehle C, Soto J, Theobald HA, Hu XX, Ganesan B, Weimer BC, Abel ED. Tissue-specific remodeling of the mitochondrial proteome in type 1 diabetic akita mice. Diabetes 2009;58(9):1986-97. Go to original source... Go to PubMed...
  85. Zhang D, Yang H, Kong X, Wang K, Mao X, Yan X, Wang Y, Liu S, Zhang X, Li J, Chen L, Wu J, Wei M, Yang J, Guan Y. Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes. American journal of physiology. Endocrinology and metabolism 2011;300(2):E287-95. Go to PubMed...
  86. Kartha GK, Moshal KS, Sen U, Joshua IG, Tyagi N, Steed MM, Tyagi SC. Renal mitochondrial damage and protein modification in type-2 diabetes. Acta diabetologica 2008;45(2):75-81. Go to original source... Go to PubMed...
  87. Gong D, Chen X, Middleditch M, Huang L, Vazhoor Amarsingh G, Reddy S, Lu J, Zhang S, Ruggiero K, Phillips AR, Cooper GJ. Quantitative proteomic profiling identifies new renal targets of copper(II)-selective chelation in the reversal of diabetic nephropathy in rats. Proteomics 2009;9(18):4309-20. Go to original source... Go to PubMed...
  88. Lee H, Abe Y, Lee I, Shrivastav S, Crusan AP, Huttemann M, Hopfer U, Felder RA, Asico LD, Armando I, Jose PA, Kopp JB. Increased mitochondrial activity in renal proximal tubule cells from young spontaneously hypertensive rats. Kidney international 2014;85(3):561-9. Go to original source... Go to PubMed...
  89. Mujkosova J, Ulicna O, Waczulikova I, Vlkovicova J, Vancova O, Ferko M, Polak S, Ziegelhoffer A. Mitochondrial function in heart and kidney of spontaneously hypertensive rats: influence of captopril treatment. Gen. Physiol. Biophys. 2010;29(2):203-7. Go to original source... Go to PubMed...
  90. Cowley AW, Jr., Abe M, Mori T, O'Connor PM, Ohsaki Y, Zheleznova NN. Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension. American journal of physiology. Renal physiology 2015;308(3):F179-97. Go to original source... Go to PubMed...
  91. de Cavanagh EM, Toblli JE, Ferder L, Piotrkowski B, Stella I, Inserra F. Renal mitochondrial dysfunction in spontaneously hypertensive rats is attenuated by losartan but not by amlodipine. American journal of physiology. Regulatory, integrative and comparative physiology 2006;290(6):R1616-25. Go to original source...
  92. Eirin A, Ebrahimi B, Zhang X, Zhu XY, Woollard JR, He Q, Textor SC, Lerman A, Lerman LO. Mitochondrial protection restores renal function in swine atherosclerotic renovascular disease. Cardiovascular research 2014;103(4):461-72. Go to original source... Go to PubMed...
  93. Yu M, Wang XX, Du YX, Chen HJ, Guo XG, Xia L, Chen JZ. Comparative analysis of renal protein expression in spontaneously hypertensive rat. Clinical and Experimental Hypertension 2008;30(5):315-25. Go to original source... Go to PubMed...
  94. Zheleznova NN, Yang C, Ryan RP, Halligan BD, Liang M, Greene AS, Cowley AW, Jr. Mitochondrial proteomic analysis reveals deficiencies in oxygen utilization in medullary thick ascending limb of Henle in the Dahl salt-sensitive rat. Physiological genomics 2012;44(17):829-42. Go to original source... Go to PubMed...
  95. Curthoys NP, Taylor L, Hoffert JD, Knepper MA. Proteomic analysis of the adaptive response of rat renal proximal tubules to metabolic acidosis. American journal of physiology. Renal physiology 2007;292(1):F140-7. Go to original source... Go to PubMed...
  96. Morigi M, Perico L, Rota C, Longaretti L, Conti S, Rottoli D, Novelli R, Remuzzi G, Benigni A. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J Clin Invest 2015;125(2):715-26. Go to original source... Go to PubMed...
  97. Ishimoto Y, Inagi R. Mitochondria: a therapeutic target in acute kidney injury. Nephrology Dialysis Transplantation 2015;Sep 1. [Epub ahead of print] doi:10.1093/ndt/gfv317 Go to original source...
  98. Charlwood J, Skehel JM, King N, Camilleri P, Lord P, Bugelski P, Atif U. Proteomic analysis of rat kidney cortex following treatment with gentamicin. Journal of proteome research 2002;1(1):73-82. Go to original source... Go to PubMed...
  99. Klawitter J, Schmitz V, Brunner N, Crunk A, Corby K, Bendrick-Peart J, Leibfritz D, Edelstein CL, Thurman JM, Christians U. Low-salt diet and cyclosporine nephrotoxicity: changes in kidney cell metabolism. Journal of proteome research 2012;11(11):5135-44. Go to original source... Go to PubMed...
  100. Veena CK, Josephine A, Preetha SP, Rajesh NG, Varalakshmi P. Mitochondrial dysfunction in an animal model of hyperoxaluria: a prophylactic approach with fucoidan. European journal of pharmacology 2008;579(1-3):330-6. Go to original source... Go to PubMed...
  101. Thongboonkerd V, Semangoen T, Sinchaikul S, Chen ST. Proteomic analysis of calcium oxalate monohydrate crystal-induced cytotoxicity in distal renal tubular cells. Journal of proteome research 2008;7(11):4689-4700. Go to original source... Go to PubMed...
  102. Semangoen T, Sinchaikul S, Chen ST, Thongboonkerd V. Altered proteins in MDCK renal tubular cells in response to calcium oxalate dihydrate crystal adhesion: a proteomics approach. Journal of proteome research 2008;7(7):2889-96. Go to original source... Go to PubMed...
  103. Ahn CS, Metallo CM. Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metabolism 2015;3(1):1-9. Go to original source... Go to PubMed...
  104. Unwin RD, Craven RA, Harnden P, Hanrahan S, Totty N, Knowles M, Eardley I, Selby PJ, Banks RE. Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics 2003;3(8):1620-32. Go to original source... Go to PubMed...
  105. Yusenko MV, Ruppert T, Kovacs G. Analysis of differentially expressed mitochondrial proteins in chromophobe renal cell carcinomas and renal oncocytomas by 2-D gel electrophoresis. International journal of biological sciences 2010;6(3):213-24. Go to original source... Go to PubMed...
  106. Simonnet H, Alazard N, Pfeiffer K, Gallou C, Beroud C, Demont J, Bouvier R, Schagger H, Godinot C. Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis 2002;23(5):759-68. Go to original source... Go to PubMed...
  107. Junker H, Venz S, Zimmermann U, Thiele A, Scharf C, Walther R. Stage-related alterations in renal cell carcinoma-comprehensive quantitative analysis by 2D-DIGE and protein network analysis. PloS one 2011;6(7):e21867. Go to original source... Go to PubMed...
  108. Vasko R, Mueller GA, von Jaschke AK, Asif AR, Dihazi H. Impact of cisplatin administration on protein expression levels in renal cell carcinoma: a proteomic analysis. European journal of pharmacology 2011;670(1):50-7. Go to original source... Go to PubMed...
  109. Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. BioMed research international 2014;2014:967826. Go to original source... Go to PubMed...