Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2022, 166(2):136-139 | DOI: 10.5507/bp.2021.070

The role of tumor-associated macrophages in solid malignancies - an overview of current knowledge

Jozef Muria, Jaroslava Chylikovab, Jozef Skardac, Maria Miklosovaa, Vojtech Kamaradb
a Department of Anatomy, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
b Department of Histology and Embryology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
c Department of Pathology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic and Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic

Tumor-associated macrophages are an important part of the tumor microenvironment. The presence of certain populations of macrophages within tumor tissue may be associated with either better or worse disease prognosis. The study of these cells is currently receiving a great deal of attention, with the most important topics of investigation raised being: the typification of subpopulations of tumor-associated macrophages; identification of the prognostic significance of population density and distribution of macrophages in the tumor microenvironment; ways to influence macrophage activity, migration and differentiation within the tumor. The answers to these questions can improve the efficiency of immunoterapy for malignancies. The presented article briefly reviews recent findings on tumor-associated macrophages in solid malignancies.

Keywords: tumor microenvironment (TME), tumor-associated macrophages (TAMs), resident tissue macrophages (NTAMs), classically activated macrophages (M1), alternatively activated macrophages (M2)

Received: September 16, 2021; Revised: September 16, 2021; Accepted: December 1, 2021; Prepublished online: December 17, 2021; Published: May 13, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Muri, J., Chylikova, J., Skarda, J., Miklosova, M., & Kamarad, V. (2022). The role of tumor-associated macrophages in solid malignancies - an overview of current knowledge. Biomedical papers166(2), 136-139. doi: 10.5507/bp.2021.070
Download citation

References

  1. Burdova A, Rulisek P, Bouchal J, Král M, Student V, Kolar Z. Infiltration of prostate cancer by CD204+ and CD3+ cells correlates with ERG expression and TMPRSS2-ERG gene fusion. Klin Onkol 2018;31(6):421-28. Go to original source... Go to PubMed...
  2. Kielbassa K, Vegna S, Ramirez C, Akkari L. Understanding the origin and diversity of macrophages to tailor their targeting in solid cancers. Front Immunol 2019;10:2215. Go to original source... Go to PubMed...
  3. Chen Y, Zhang S, Wang Q, Zhang X. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol 2017;10(1):36. Go to original source... Go to PubMed...
  4. Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol 2017;10(1):58. Go to original source... Go to PubMed...
  5. Teng F, Tian WY, Wang YM, Zhang YF, Guo F, Zhao J, Gao C, Xue FX. Cancer-associated fibroblasts promote the progression of endometrial cancer via the SDF-1/CXCR4 axis. J Hematol Oncol 2016;9:8. Go to original source... Go to PubMed...
  6. Garrido-Martin EM, Mellows TWP, Clarke J, Ganesan AP, Wood O, Cazaly A, Seumois G, Chee SJ, Alzetani A, King EV, Hedrick CC, Thomas G, Friedmann PS, Ottensmeier CH, Vijayanand P, Sanchez-Elsner T. M1hot tumor-associated macrophages boost tissue-resident memory T cells infiltration and survival in human lung cancer. J Immunother Cancer 2020;8(2):e000778. Go to original source... Go to PubMed...
  7. Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, Soong DYH, Cotechini T, Anur P, Lin EY, Fidanza A, Lopez-Yrigoyen M, Millar MR, Urman A, Ai Z, Spellman PT, Hwang ES, Dixon JM, Wiechmann L, Coussens LM, Smith HO, Pollard JW. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 2019;35(4):588-602.e10. Go to original source... Go to PubMed...
  8. Quail DF, Joyce JA. Molecular pathways: deciphering mechanisms of resistance to macrophage-targeted therapies. Clin Cancer Res 2017;23(4):876-84. Go to original source... Go to PubMed...
  9. Gordon S, Plüddemann A. The mononuclear phagocytic system. Generation of diversity. Front Immunol 2019;10:1893. Go to original source... Go to PubMed...
  10. Jackute J, Zemaitis M, Pranys D, Sitkauskiene B, Miliauskas S, Vaitkiene S, Sakalauskas R. Distribution of M1 and M2 macrophages in tumor islets and stroma in relation to prognosis of non-small cell lung cancer. BMC Immunol 2018;19(1):3. Go to original source... Go to PubMed...
  11. Loyher PL, Hamon P, Laviron M, Meghraoui-Kheddar A, Goncalves E, Deng Z, Torstensson S, Bercovici N, Baudesson de Chanville C, Combadière B, Geissmann F, Savina A, Combadière C, Boissonnas A. Macrophages of distinct origins contribute to tumor development in the lung. J Exp Med 2018;215(10):2536-53. Go to original source... Go to PubMed...
  12. Sarode P, Schaefer MB, Grimminger F, Seeger W, Savai R. Macrophage and tumor cell cross-talk is fundamental for lung tumor progression: we need to talk. Front Oncol 2020;10:324. Go to original source... Go to PubMed...
  13. Sumitomo R, Hirai T, Fujita M, Murakami H, Otake Y, Huang CL. M2 tumor-associated macrophages promote tumor progression in non-small-cell lung cancer. Exp Ther Med 2019;18(6):4490-98. Go to original source... Go to PubMed...
  14. Hwang I, Kim JW, Ylaya K, Chung EJ, Kitano H, Perry C, Hanaoka J, Fukuoka J, Chung JY, Hewitt SM. Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J Transl Med 2020;18(1):443. Go to original source... Go to PubMed...
  15. Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev 2017;114:206-21. Go to original source... Go to PubMed...
  16. Singhal S, Stadanlick J, Annunziata MJ, Rao AS, Bhojnagarwala PS, O'Brien S, Moon EK, Cantu E, Danet-Desnoyers G, Ra HJ, Litzky L, Akimova T, Beier UH, Hancock WW, Albelda SM, Eruslanov EB. Human tumor-associated monocytes/macrophages and their regulation of T cell responses in early-stage lung cancer. Sci Transl Med 2019;11(479):eaat1500. Go to original source... Go to PubMed...
  17. Anfray C, Ummarino A, Andón FT, Allavena P. Current strategies to target tumor-associated-macrophages to improve anti-tumor immune responses. Cells 2019;9(1):46. Go to original source... Go to PubMed...
  18. Mantovani A, Allavena P. The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med 2015;212(4):435-45. Go to original source... Go to PubMed...
  19. Yang M, McKay D, Pollard JW, Lewis CE. Diverse functions of macrophages in different tumor microenvironments. Cancer Res 2018;78(19):5492-503. Go to original source... Go to PubMed...
  20. Wenes M, Shang M, Di Matteo M, Goveia J, Martín-Pérez R, Serneels J, Prenen H, Ghesquière B, Carmeliet P, Mazzone M. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab 2016;24(5):701-15. Go to original source... Go to PubMed...
  21. Arwert EN, Harney AS, Entenberg D, Wang Y, Sahai E, Pollard JW, Condeelis JS. A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation. Cell Rep 2018;23(5):1239-48. Go to original source... Go to PubMed...
  22. Frank AC, Ebersberger S, Fink AF, Lampe S, Weigert A, Schmid T, Ebersberger I, Syed SN, Brüne B. Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype. Nat Commun 2019;10(1):1135. Go to original source... Go to PubMed...
  23. Syed SN, Weigert A, Brüne B. Sphingosine kinases are involved in macrophage NLRP3 inflammasome transcriptional induction. Int J Mol Sci 2020;21(13):4733. Go to original source... Go to PubMed...
  24. Voss JJLP, Ford CA, Petrova S, Melville L, Paterson M, Pound JD, Holland P, Giotti B, Freeman TC, Gregory CD. Modulation of macrophage antitumor potential by apoptotic lymphoma cells. Cell Death Differ 2017;24(6):971-83. Go to original source... Go to PubMed...
  25. Wu P, Wu D, Zhao L, Huang L, Chen G, Shen G, Huang J, Chai Y. Inverse role of distinct subsets and distribution of macrophage in lung cancer prognosis: a meta-analysis. Oncotarget 2016;7(26):40451-60. Go to original source... Go to PubMed...
  26. Mei J, Xiao Z, Guo C, Pu Q, Ma L, Liu C, Lin F, Liao H, You Z, Liu L. Prognostic impact of tumor-associated macrophage infiltration in non-small cell lung cancer: a systemic review and meta-analysis. Oncotarget 2016;7(23):34217-28. Go to original source... Go to PubMed...
  27. Caux C, Ramos RN, Prendergast GC, Bendriss-Vermare N, Ménétrier-Caux C. A milestone review on how macrophages affect tumor growth. Cancer Res 2016;76(22):6439-42. Go to original source... Go to PubMed...
  28. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017;14(7):399-416. Go to original source... Go to PubMed...
  29. Yáñez A, Coetzee SG, Olsson A, Muench DE, Berman BP, Hazelett DJ, Salomonis N, Grimes HL, Goodridge HS. Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors independently produce functionally distinct monocytes. Immunity 2017;47(5):890-902.e4. Go to original source... Go to PubMed...
  30. van Dalen FJ, van Stevendaal MHME, Fennemann FL, Verdoes M, Ilina O. Molecular repolarisation of tumour-associated macrophages. Molecules 2018;24(1):9. Go to original source... Go to PubMed...
  31. Xiang X, Wang J, Lu D, Xu X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther 2021;6(1):75. Go to original source... Go to PubMed...
  32. Dalton HJ, Pradeep S, McGuire M, Hailemichael Y, Ma S, Lyons Y, Armaiz-Pena GN, Previs RA, Hansen JM, Rupaimoole R, Gonzalez-Villasana V, Cho MS, Wu SY, Mangala LS, Jennings NB, Hu W, Langley R, Mu H, Andreeff M, Bar-Eli M, Overwijk W, Ram P, Lopez-Berestein G, Coleman RL, Sood AK. Macrophages facilitate resistance to anti-VEGF therapy by altered VEGFR expression. Clin Cancer Res 2017;23(22):7034-46. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.