Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020, 164(2):127-132 | DOI: 10.5507/bp.2020.015

Gene rearrangement detection by next-generation sequencing in patients with non-small cell lung carcinoma

Aneta Brisudovaa, Jozef Skardaa
a Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic

Non-small cell lung carcinoma (NSCLC) is the leading cause of cancer-related deaths worldwide. Various molecular markers in NSCLC patients have been developed, including gene rearrangements, currently used in therapeutic strategies. With increasing number of these molecular biomarkers of NSCLC, there is a demand for highly efficient methods for detecting mutations and translocations in treatable targets. Those currently available U.S. Food and Drug Administration (FDA) approved approaches, for example imunohistochemisty (IHC) and fluorescence in situ hybridization (FISH), are inadequate, due to sufficient quantity of material and long time duration. Next-generation massive parallel sequencing (NGS), with the ability to perform and capture data from millions of sequencing reactions simultaneously could resolve the problem. Thanks to gradual NGS introduction into clinical laboratories, screening time should be considerably shorter, which is very important for patients with advanced NSCLC. Moreover, only a minimum sample input is needed for achieving adequate results. NGS was compared to the current detection methods of ALK, ROS1, c-RET and c-MET rearrangements in NSCLC and a significant match, between IHC, FISH and NGS results, was found. Recent available researches have been carried out on a small numbers of patients. Verifying these results on larger patients cohort is important. This review sumarizes the literature on this subject and compares current possibilities of predictive gene rearrangements detection in patients with NSCLC.

Keywords: non-small cel lung carcinoma, gene rearrangement, next-generation sequencing, immunohistochemistry, fluorescence in situ hybridization

Received: November 11, 2019; Revised: March 10, 2020; Accepted: March 19, 2020; Prepublished online: April 6, 2020; Published: June 18, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Brisudova, A., & Skarda, J. (2020). Gene rearrangement detection by next-generation sequencing in patients with non-small cell lung carcinoma. Biomedical papers164(2), 127-132. doi: 10.5507/bp.2020.015
Download citation

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistic, 2019. CA Cancer J Clin 2019;69(1):7-34. Go to original source... Go to PubMed...
  2. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J, Johnson DH. Comparison of four chemotherapy regimens for advanced non-small lung cancer. N Engl J Med 2002;346(2):92-8. Go to original source... Go to PubMed...
  3. Skřičková J, Špelda S, Kaplnová J, Merta Z, Pálková I, Salajka D, Vomela J. Bronchogenní ka rcinom. In: Adam Z, Vorlíček J, edit. Speciální onkologie. Brno: Masarykova Univerzita 2002;34-53.
  4. Sun S, Schiller JH, Gazdar AF. Lung cancer in never smokers--a different disease. Nat Rev Cancer 2007;7(10):778-90. Go to original source... Go to PubMed...
  5. Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung cancer res 2016;5(3):288-300. Go to original source... Go to PubMed...
  6. Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG, Shepherd FA. Non-small cell lung cancer. Lancet 2011;378(9804):1727-40. Go to original source... Go to PubMed...
  7. Sun Y, Ren Y, Fang Z, Li C, Fang R, Gao B, Han X, Tian W, Pao W, Chen H, Ji H. Lung adenocarcinoma from East Asian never-smokers is a disease largely defined by targetable oncogenic mutant kinases. J Clinic Oncol 2010;28(30):4616-20. Go to original source... Go to PubMed...
  8. Noone AM, Cronin KA, Alterkruse SF, Howlader N, Lewis DR, Petkov VI, Penberthy L. Cancer incidence and survival trends by subtype using data from the surveillance epidemiology and end results program, 1992-2013. Cancer Epidemiol, Biomarkers Prev 2017;26(4):632-41. Go to original source... Go to PubMed...
  9. Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends--an update. Cancer Epidemiol, Biomarkers Prev 2016;25(1):16-27. Go to original source... Go to PubMed...
  10. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350(21):2129-39. Go to original source... Go to PubMed...
  11. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fuji Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304(5676):1497-500. Go to original source... Go to PubMed...
  12. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2(2):127-37. Go to original source... Go to PubMed...
  13. Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. New Engl J Med 2008;358(11):1160-74. Go to original source... Go to PubMed...
  14. Eberhard DA, Giaccone G, Johnson BE, Non-small-cell lung cancer working group. Biomarkers of response to epidermal growth factor receptor inhibitors in non-small-cell lung cancer working group: standardization for use in the clinical trials setting. J Clin Oncol 2008;26(6):983-94. Go to original source... Go to PubMed...
  15. Da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer. Annu Rev Pathol 2011;6:49-69. Go to original source... Go to PubMed...
  16. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, Look AT. Fusion of kinase gene, ALK, to a nucleolar protein gene, NPM, in non Hodgkin's lymphoma. Science 1994;263(5151):1281-4. Go to original source... Go to PubMed...
  17. Shiota M, Nakamura S, Ichinohasama R, Abe M, Akagi T, Takeshita M, Mori N, Fujimoto J, Miyauchi J, Mikata A, Nanba K, Takami T, Yamabe H, Takano Y, Izumo T, Nagatani T, Mohri N, Nasu K, Satoh H, Katano H, Fujimoto J, Yamamoto T, Mori S. Anaplastic large cell lymphomas expressing the novel chimeric protein p80NP/ALK: a distinct clinicopathologic entity. Blood 1995;86(5):1954-60. Go to original source...
  18. Duyster J, Bai RY., Morris SW. Translocation involving anaplastic lymphoma kinase (ALK). Oncogene 2001;20(40):5623-37. Go to original source... Go to PubMed...
  19. Amin HM, Lai R. Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood 2007:110(7):2259-67. Go to original source... Go to PubMed...
  20. Zhang M, Wang Q, Ding Y, Wang G, Chu Y, He X, Wu X, Shao YW, Lu K. CUX1-ALK, a novel ALK rearrangement that responds to crizotinib in non-small cell lung cancer. J Thorac Oncol 2018;13(11):1792-7. Go to original source... Go to PubMed...
  21. Yang Y, Qin SK, Zhu J, Wang R, Li YM, Xie ZY, Wu Q. A rare STRN-ALK Fusion in lung adenocarcinoma identified using next-generation sequencing-based circulating tumor DNA profiling exhibits excellent response to crizotinib. Mayo Clin Proc Innov Qual Outcomes 2017;1(1):111-6. Go to original source... Go to PubMed...
  22. Iyevleva AG, Raskin GA, Tiurin VI, Sokolenko AP, Mitiushkina NV, Aleksakhina SN, Garifullina AR, Strelkova TN, Merkulov VO, Ivantsov AO, Kuligina ESh, Pozharisski KM, Togo AV, Imyanitov EN. Novel ALK fusion partners in lung cancer. Cancer Lett 2015;362(1):116-21. Go to original source... Go to PubMed...
  23. Childress M, Himmelberg SM, Chen H, Deng W, Davies MA, Lovly CM. ALK fusion partners impact response to ALK inhibition: Differential effects on sensitivity, cellular phenotypes, and biochemical properties. Mol Cancer Res 2018;16(11):1724-36. Go to original source... Go to PubMed...
  24. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburtani H, Niki T, Sohara Y, Sugiyama Y, Mano H. Identification of the transforming EML4-ALK fusion gene in non-small cell lung cancer. Nature 2007;448:561-6. Go to original source... Go to PubMed...
  25. Inamura K, Takeuchi K, Togashi Y, Nomura K, Ninomiya H, Okui M, Satoh Y, Okumura A, Nakagawa K, Soda M, Choi YL, Niki T, Mano H, Ishikawa Y. EML4-ALK fusion is linked to histological charasteristics in a subset of lung cancers. J Thorac Oncol 2008;3(1):13-7. Go to original source... Go to PubMed...
  26. Pekar-Zlotin M, Hirsch FR, Soussan-Gutman L, Ilouze M, Dvir A, Boyle T, Wynes M, Miller VA, Lipson D, Palmer GA, Ali SM, Dekel S, Brenner R, Bunn PA Jr, Peled N. Fluorescence in situ hybridization, immunohistochemistry, and next-generation sequencing for detection of EML-4-ALK rearrangement in lung cancer. Oncologist 2015;20(3):316-22. Go to original source... Go to PubMed...
  27. Solomon B, Varella-Garcia M, Camidge DR. ALK gene rearrangements: a new therapeutic target in a molecularly defined subset of non-small cell lung cancer. J Thorac Oncol 2009;4(12):1450-4. Go to original source... Go to PubMed...
  28. Van der Wekken AJ, Pelgrim R, 't Hart N, Werner N, Mastik MF, Hendriks L, van der Hajden EHFM, Looijen-Salamon M, de Langen AJ, Staal-van den Brekel J, Riemersma S, van den Borne BE, Speel EJM, Dingemans AC, Hiltermann TJN, van den Berg A, Timens W, Schuuring E, Groen HJM. Dichotomous ALK-IHC Is a Better Predictor for ALK Inhibition Outcome than Traditional ALK-FISH in Advanced Non-Small Cell Lung Cancer. Clin Cancer Res 2017;23(15):4251-8. Go to original source... Go to PubMed...
  29. U.S. Food & Drug Administration. List of Cleared or Approved Companion Diagnostic Devices (In Vitro and Imaging Tools) [cited 2019 Oct 15]. Available from: https://www.fda.gov/medical-devices/vitro-diagnostics/ list-cleared-or-approved-companion-diagnostic-devices-vitro-andimaging-tools
  30. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, Hu Y, Tan Z, Stokes M, Sullivan L, Mitchell J, Wetzel R, Macneill J, Ren JM, Yuan J, Bakalarski CE, Villen J, Kornhauser JM, Smith B, Li D, Zhou X, Gygi SP, Gu TL, Polakiewicz RD, Rush J, Comb MJ. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007;131(6):1190-203. Go to original source... Go to PubMed...
  31. Bargethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, Massion PP, Siwak-Tapp C, Gonzalez A, Fang R, Mark EJ, Batten JM, Chen H, Wilner KD, Kwak EL, Clark JW, Carbone DP, Ji H, Engelman JA, Mino-Kenudson M, Pao W, Iafrate AJ. ROS1 rearrangement define a unique molecular class of lung cancers. J Clin Oncol 2012;30(8):863-70. Go to original source... Go to PubMed...
  32. Birchmeier C, Sharma S, Wigler M. Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc Natl Acad Sci U S A 1987;84(24):9270-4. Go to original source... Go to PubMed...
  33. Charest A, Lane K, Mc Mahon K, Park J, Preisinger E, Conroy H, Housman D. Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21q21). Genes Chromosomes Cancer 2003;37(1):58-71. Go to original source... Go to PubMed...
  34. Arai Y, Totoki Y, Takahashi H, Nakamura H, Hama N, Kohno T, Tsuta K, Yoshida A, Asamura J, Mutoh M, Hosoda F, Tsuda H, Shibata T. Mouse model for ROS1-rearranged lung cancer. PLoS One 2013;8(2):e56010. Go to original source... Go to PubMed...
  35. Davies KD, Le AT, Theodoro MF, Skokan MC, Aisner DL, Berge EM, Terracciano LM, Cappuzzo F, Incarbone M, Roncalli M, Alloisio M, Santoro A, Camidge DR, Varella-Garcia M, Doebele RC. Identifying and targeting ROS1 gene fusions in non-small cell lung cancer. Clin Cancer Res 2012;18(17):4570-9. Go to original source... Go to PubMed...
  36. Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, Lee J, Jung YJ, Kim JO, Shin JY, Yu SB, Kim J, Lee ER, Kang CH, Park IK, Rhee H, Lee SH, Kim JI, Kang JH, Kim YT. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res 2012;22(11):2109-19. Go to original source... Go to PubMed...
  37. Jun HJ, Johnson H, Bronson RT, de Feraudy S, White F, Charest A. The oncogenic lung cancer fusion kinase CD74-ROS activates a novel invasiveness pathway through E-Syt1 phosphorylation. Cancer Res 2012;72(15):3764-74. Go to original source... Go to PubMed...
  38. Ackermann CJ, Stock g, Tay R, Dawod M, Gomes F, Califano R. Targeted therapy for RET-Rearranged Non-Small-Cell Lung Cancer: Clinicall development and future directions. Dovepress 2019;12:7857-64. Go to original source... Go to PubMed...
  39. Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 1985;42(2):581-8. Go to original source... Go to PubMed...
  40. Kohno T. Ichikawa H. Totoki Y. Yasuda K. Hiramoto M. Nammo T. Sakamoto H. Tsuta K. Furuta K. Shimada Y. Iwakawa R. Ogiwara H. Oike T. Enari M. Schetter AJ. Okayama H. Haugen A. Skaug V. Chiku S. Yamanaka I. Arai Y. Watanabe S. Sekine I. Ogawa S. Harris CC. Tsuda H. Yoshida T, Yokota J, Shibata T. KIF5B-RET fusions in lung adenocarcinoma. Nat Med 2012;18(3):375-377. Go to original source... Go to PubMed...
  41. Ishizaka Y, Itoh F, Tahira T, Ikeda I, Sugimura T, Tucker J, Fertitta A, Carrano AV, Nagao M. Human ret proto-oncogene mapped to chromosome 10q11.2. Oncogene 1989;4(12):1519-21. Go to PubMed...
  42. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, Curran JA, Balasubramanian S, Bloon T, Brennan KW, Donahue A, Downing SR, Frampton GM, Garcia L, Juhn F, Mitchell KC, White E, White J, Zwirko Z, Perezt T, Nechushtan H, Soussan-Gutman L, Kim J, Sasaki H, Kim HR, Park SI, Ercan D, Sheehan CE, Ross JS, Cronin MT, Jänne PA, Stephens PJ. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012;18(3):382-4. Go to original source... Go to PubMed...
  43. Wang Y, Xu Y, Wang X, Sun C, Guo Y, Shao G, Yang Z, Qui S, Ma K. RET fusion in advanced non-small-cell lung cancer and response to cabozatinib. Medicine (Baltimore) 2019;98(3):e14120. Go to original source... Go to PubMed...
  44. Wang R, Hu H, Pan Y, Li Y, Ye T, Li C, Luo X, Wang L, Li H, Zhang Y, Li F, Lu Y, Lu Q, Xu J, Garfield D, Shen L, Ji H, Pao W, Sun Y, Chen H. RET fusion define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol 2012;30(35):4352-9. Go to original source... Go to PubMed...
  45. Bronte G, Ulivi P, Verlicchi A, Cravero P, Delmonte A, Crino L. Targeting RET-rearranged non-small-cell lung cancer: future prospects. Lung cancer (Auckl) 2019;10:27-36. Go to original source... Go to PubMed...
  46. Duh FM, Scherer SW, Tsui LC, Lerman MI, Zbar B, Schmidt L. Gene structure of the human MET proto-oncogene. Oncogene 1997;25(13):1583-6. Go to original source... Go to PubMed...
  47. Wang Q, Yang S, Wang K, Sun SY. MET inhibitors for targeted therapy of EGFR-TKI-resistant lung cancer. J Hematol Oncol 2019;12(1):63. Go to original source... Go to PubMed...
  48. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, Aaronson SA. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 1991;251(4995):802-4. Go to original source... Go to PubMed...
  49. Ponzetto C, Bardelli A, Zhen Z, Marina F, dalla Zonca P, Giordano S. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 1994;77:261-71. Go to original source... Go to PubMed...
  50. Fixman ED, Fournier TM, Kamikura DM, Naujokas MA, Park M. Pathways downstream of Shc and Grb2 are required for cell transformation by the tpr-Met oncoprotein. J Biol Chem 1996;271:13116-22. Go to original source... Go to PubMed...
  51. Boccaccio C, Gaudino G, Gambarotta G, Galimi F, Comoglio PM. Hepatocyte growth factor (HGF) receptor expression is inducible and is part of the delayed-early responce to HGF. J Biol Chem 1994;269:12846-51. Go to original source... Go to PubMed...
  52. Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol 2011;3(1):7-19. Go to original source... Go to PubMed...
  53. Califano R, Morgillo F, De Mello RA, Mountzios G. Role of mesenachymal-epithelial transition amplification in resistence to anti-epidermal growth factor receptor agents. Ann Transl Med 2015;3(6):81. Go to PubMed...
  54. Bäumer C, Fisch E, Wedler H, Reinecke F, Korfhage C. Exploring DNA quality of single cells for genome analysis with simultaneous whole-genome amplification. Sci Rep 2018;8(1):7476. Go to original source... Go to PubMed...
  55. Ross K, Pailler E, Faugeroux V, Taylor M, Oulhen M, Auger N, Planchard D, Soria JC, Lindsay CR, Besse B, Vielh P, Farace F. The potential diagnostic power of circulating tumor cell anlysis for non-small-cell lung cancer. Expert Rev Mol Diagn 2015;15(12):1605-29. Go to original source... Go to PubMed...
  56. Sorber L, Zwaenpoel K, Deschoolmeester V, Van Schii PE, Van Meerbeeck J, Lardon F, Rolfo C, Pauwels P. Circulating cel-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung cancer 2017;107:100-7. Go to original source... Go to PubMed...
  57. Cui S, Zhang W, Xiong L, Pan F, Niu Y, Chu T, Wang H, Zhao Y, Jiang L. Use of capture-based next-generation sequencing to detect ALK fusion in plasma cell-free DNA of patients with non-small-cell lung cancer. Oncotarget 2017;8(2):2771-80. Go to original source... Go to PubMed...
  58. Lindquist KE, Karlsson A, Levéen P, Brunnström H, Reuterswärd C, Holm K, Jönsson M, Annersten K, Rosengren F, Jirström K, Kosieradzki J, Ek L, Borg A, Planck M, Jönsson G, Staaf J. Clinical Framework for next generation sequencing based analysis of treatment predictive mutationst and multiplexed gene fusion detection in non-small cell lung cancer. Oncotarget 2017;8(21):34796-810. Go to original source... Go to PubMed...
  59. Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, Akimov M, Bufill JA, Lee C, Jentz D, Hoover R, Ou SH, Salgia R, Brennan T, Chalmers ZR, Jaeger S, Huang A, Elvin JA, Erlich R, Fichtenholz A, Gowen KA, Greenbowe J, Johnson A, Khaira D, McMahon C, Sanford EM, Roels S, White J, Greshock J, Schlegel R, Lipson D, Yelensky R, Morosini D, Ross JS, Collisson E, Peters M, Stephens PJ, Miller VA. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor typer and confers clinical sensitivity of MET inhibitors. Cancer Discov 2015;5(8):850-9. Go to original source... Go to PubMed...
  60. Haynes BC, Blinder RA, Cardwell RD, Zeigler R, Gokul S, Thibert JR, Chen L, Fujimoto J, Papadimitrakopoulou VA, Wistuba II, Latham GJ. An Integrated Next-Generation Sequencing System for analyzing DNA Mutations, Gene fusions, and RNA Expression in Lung Cancer. Transl Oncol 2019;12(6):836-45. Go to original source... Go to PubMed...
  61. Di Resta C, Galbiati S, Carrera P, Ferrari M. Next-generation sequencing aproach for the diagnosis of human diseases: open challenges and new opportunities. EJIFCC 2018;29(1);4-14. Go to PubMed...
  62. Tsoulos N, Papadopoulou E, Metaxa-Mariatou V, Tsaousis G, Efstathiadou C, Tounta G, Scapeti A, Bourkoula E, Zarogoulidis P, Pentheroudakis G, Kakolyris S, Boukovinas I, Papakotoulas P, Athanasiadis E, Floros T, Koumarianou A, Barbounis V, Dinischiotu A, Nasioulas G. Tumor molecular profiling of NSCLC patients using next generation sequencing. Oncol Rep 2017;38(6):3419-29. Go to original source... Go to PubMed...
  63. Yi ES, Boland JM, Maleszewski JJ, Roden AC, Oliveira AM, Aubry MC, Erickson-Johnson MR, Caron BL, Li Y, Tang H, Stoddard S, Wampfler J, Kulig K, Yang P. Correlation of IHC and FISH for ALK gene rearrangement in non-small call lung carcinoma: IHC score algorithm for FISH. J Thorac Oncol 2011;6(3)459-65. Go to original source... Go to PubMed...
  64. Luciani F, Bull RA, Lloyd AR. Next generation deep sequencing and vaccine design: today and tommorrow. Trends in Biotech 2012;30(9):443-52. Go to original source... Go to PubMed...
  65. Velizheva NP, Rechsteiner MP, Valtcheva N, Freiberger SN, Wong CE, Vrug B, Zhong Q, Wagner U, Moch H, Hillinger S, Schmitt-Opitz I, Soltermann A, Wild PJ, Tischler V. Targeted next-generation-sequencing for reliable detection of targetable rearrangements in lung adenocarcinoma-a single center retrospective study. Pathol, Res Pract 2018;214(4):572-8. Go to original source... Go to PubMed...
  66. Clavé S, Rodon N, Pijuan L, Diaz O, Lorenzo M, Rocha P, Taus Á, Blanco R, Boech-Barrera J, Reguart N, de la Torre N, Oliveras G, Espinet B, Bellosillo B, Puig X, Arriola E, Salido M. Next-generation sequencing for ALK and ROS1 rearrangement detection in patients with non-small-cell-lung cancer: Implications of FISH-positive patterns. Clin Lung Cancer 2019;20(4),e421-e429. Go to original source... Go to PubMed...
  67. Scattone A, Catino A, Schirosi L, Caldarola L, Tommasi S, Lacalamita R, Montagna ES, Galetta D, Serio G, Zito FA, Mangia A. Discordance between FISH, IHC, and NGS Analysis of ALK Status in Advanced Non-Small Cell Lung Cancer (NSCLC): a Brief Report of 7 Cases. Transl Oncol 2019;12(2):389-95. Go to original source... Go to PubMed...
  68. Watkins NA, Charames GS. Implementing Next-Generation Sequencing in Clinical Practice. The Journal of Applied Laboratory Medicine 2018;3(2):338-41. Go to original source... Go to PubMed...
  69. Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, Won JK, Kim YT, Kim JI, Kang JH, Seo JS. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 2012;22(3):436-45. Go to original source... Go to PubMed...
  70. Borrelli N, Giannini R, Proietti A, Ali G, Pelliccioni S, Niccoli C, Lucchi M, Melfi F, Mussi A, Basolo F, Fontanini G. KIF5B/RET fusion gene analysis in a selected series of cytological specimens of EGFR, KRAS and EML4-ALK wild-type adenocarcinomas of the lung. Lung Cancer 2013;81(3):377-81. Go to original source... Go to PubMed...
  71. Tran H, Zhang J, Vasquez M, Fossella F, Simon G, Tsao A, Gibbons DL, Elamin Y, Banks K, Lanman R, Papadimitrakopoulou V, Heymach J. Retrospective review clinical use of a cfDNA blood test for identification of targetable molecular alternations in patients with lung cancer. J Thorac Oncol 2017;12(1):s952. Go to original source...
  72. Ferrara R, Auger N, Auclin E, Besse B. Clinical and translational implications of RET rearrangements in non-small cell lung cancer. J Thoracic Oncol 2018;13(1):27-45. Go to original source... Go to PubMed...
  73. Heist RS, Shim HS, Gingipally S, Mino-Kenduson M, Le L, Gainor JF, Zheng Z, Aryee M, Xia J, Jia P, Jin H, Zhao Z, Pao W, Engelman JA, Iafrate AJ. MET exon 14 skipping in non-small cell lung cancer. Oncologist 2016;21(4):481-6. Go to original source... Go to PubMed...
  74. Kim EK, Kim KA, Lee CY, Kim S, Chang S, Cho BC, Shim HS. Molecular diagnostic assays and clinicopathologic implications of MET exon 14 skipping mutation in non-small-cell lung cancer. Clinical lung cancer 2019;20(1):e123-e32. Go to original source... Go to PubMed...
  75. Ryška A, Buiga R, Fakirova A, Kern I, Olszewski W, Plank L, Seiwerth S, Toth E, Zivka E, Thallinger C, Zielinksi C, Brcic L. Non-small cell lung cancer in countries of central and southeastern europe: Diagnostic procedures and treatment reimbursement surveyed by the central european cooperative onkology group. Oncologist 2018;23(12):e152-e158. Go to original source... Go to PubMed...
  76. Yoshida T, Oya Y, Tanaka K, Shimizu J, Horio Y, Kuroda H, Sakao Y, Hida T, Yatabe Y. Differential Crizotinib Response Duration Among ALK Fusion Variants in ALK-Positive Non-Small-Cell Lung Cancer. J Clin Oncol 2016;34(28):3383-9. Go to original source... Go to PubMed...
  77. Kang J, Zhang X, Chen H, Zhou Q, Tu H, Li WF, Wu YL, Yang J. Uncommon ALK fusion partners in advanced ALK-positive non-small-cell lung cancer. J Clin Oncol 2018;36(15):8561. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.