Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. X:X | DOI: 10.5507/bp.2026.001

Vitamin D modulates the basal secretion of inflammatory cytokines in breast cancer cells: An in-vitro study

Lina Elsalem1, Lina Aldarayseh1, Nosayba Al-Azzam2, Haneen A. Basheer3
1 Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
2 Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
3 Faculty of Pharmacy, Zarqa University, Zarqa, Jordan

Background: Proinflammatory cytokines are a pivotal factor in cancer initiation and progression. The paracrine and autocrine secretions of such inflammatory cytokines are reported in different cancer types. Recently, C-C motif ligand (CCL) 5 (CCL5), CCL22, granulocyte-colony stimulating factor (G-CSF), and interleukin-1 receptor antagonist (IL-1 RA) have been detected in basal secretions of breast cancer (BC) cells and linked to BC pathogenesis. While Vitamin D has been found to have anti-inflammatory effects, its modulation on cytokine expression is rarely studied in relation to cancer.

Aims: In this study, we evaluated whether vitamin D could modulate cytokine basal levels in BC.

Materials and Methods: This in vitro study was conducted on BC cell lines, MCF-7 and MDA-MB-231. Cells were treated with vitamin D (10 and 100 nM), and cytokine levels were measured using the Enzyme-Linked Immunosorbent Assay (ELISA).

Results: There was a significant reduction in CCL5 total levels in MCF-7 cells at both concentrations (P≤0.01) and in MDA-MB-231 at 100 nM (P≤0.05). Both concentrations reduced CCL22 levels significantly in MCF-7 (P≤0.05) and MDA-MB-231 (P≤0.01). Regarding G-CSF, a significant reduction was found in MCF-7 at both concentrations (P≤0.05) and at 100 nM in MDA-MB-231 (P≤0.01). In comparison, IL-1 RA levels were significantly elevated in MCF-7 (100 nM (P≤0.01)) and MDA-MB-231 (10 nM (P≤0.05) and 100 nM (P≤0.01)).

Conclusion: Vitamin D down-regulated the pro-inflammatory and up-regulated the anti-inflammatory cytokines. This indicates that vitamin D can modulate the expression of inflammatory mediators, particularly in a cancer setting. The results support the potential use of vitamin D as an anti-cancer agent with anti-inflammatory properties.

Keywords: chronic inflammation, inflammatory cytokines, vitamin D, breast cancer, CCL5, CCL22, G-CSF, IL-1 RA

Received: August 10, 2025; Revised: January 2, 2026; Accepted: January 7, 2026; Prepublished online: January 20, 2026 

Download citation

References

  1. Yoshida T, Kato J, Inoue I, Yoshimura N, Deguchi H, Mukoubayashi C, Oka M, Watanabe M, Enomoto S, Niwa T, Maekita T, Iguchi M, Tamai H, Utsunomiya H, Yamamichi N, Fujishiro M, Iwane M, Takeshita T, Ushijima T, Ichinose M. Cancer development based on chronic active gastritis and resulting gastric atrophy as assessed by serum levels of pepsinogen and Helicobacter pylori antibody titer. Int J Cancer 2014;134(6):1445-57. Go to original source...
  2. Bats AS, Zafrani Y, Pautier P, Duvillard P, Morice P. Malignant transformation of abdominal wall endometriosis to clear cell carcinoma: case report and review of the literature. Fertil Steril 2008;90(4):1197.e13-6. Go to original source...
  3. Jess T, Loftus EV Jr, Velayos FS, Harmsen WS, Zinsmeister AR, Smyrk TC, Schleck CD, Tremaine WJ, Melton LJ 3rd, Munkholm P, Sandborn WJ. Risk of intestinal cancer in inflammatory bowel disease: a population-based study from olmsted county, Minnesota. Gastroenterology 2006;130(4):1039-46. Go to original source...
  4. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001;357(9255):539-45. Go to original source...
  5. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144(5):646-74. Go to original source...
  6. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005;7(3):211-7. Go to original source...
  7. Chen K, Satlof L, Stoffels G, Kothapalli U, Ziluck N, Lema M, Poretsky L, Avtanski D. Cytokine secretion in breast cancer cells - MILLIPLEX assay data. Data Brief 2019;28:104798. Go to original source...
  8. Chai EZ, Siveen KS, Shanmugam MK, Arfuso F, Sethi G. Analysis of the intricate relationship between chronic inflammation and cancer. Biochem J 2015;468(1):1-15. Go to original source...
  9. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007;449(7162):557-63. Go to original source...
  10. Coward J, Kulbe H, Chakravarty P, Leader D, Vassileva V, Leinster DA, Thompson R, Schioppa T, Nemeth J, Vermeulen J, Singh N, Avril N, Cummings J, Rexhepaj E, Jirström K, Gallagher WM, Brennan DJ, McNeish IA, Balkwill FR. Interleukin-6 as a therapeutic target in human ovarian cancer. Clin Cancer Res 2011;17(18):6083-96. Go to original source...
  11. Dorff TB, Goldman B, Pinski JK, Mack PC, Lara PN Jr, Van Veldhuizen PJ Jr, Quinn DI, Vogelzang NJ, Thompson IM Jr, Hussain MH. Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 (siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clin Cancer Res 2010;16(11):3028-34. Go to original source...
  12. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394-424. doi: 10.3322/caac.21492 Erratum in: CA Cancer J Clin 2020;70(4):313. Go to original source... Go to PubMed...
  13. Yeo SK, Guan JL. Breast Cancer: Multiple Subtypes within a Tumor? Trends Cancer 2017;3(11):753-60. Go to original source...
  14. Ham M, Moon A. Inflammatory and microenvironmental factors involved in breast cancer progression. Arch Pharm Res 2013;36(12):1419-31. Go to original source...
  15. Jiang X, Shapiro DJ. The immune system and inflammation in breast cancer. Mol Cell Endocrinol 2014;382(1):673-82. Go to original source...
  16. Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM, Karin M. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 2011;470(7335):548-53. Go to original source...
  17. Sporn MB, Roberts AB. Autocrine growth factors and cancer. Nature 1985;313(6005):745-7. Go to original source...
  18. Pakianathan DR, Kuta EG, Artis DR, Skelton NJ, Hébert CA. Distinct but overlapping epitopes for the interaction of a CC-chemokine with CCR1, CCR3 and CCR5. Biochemistry1997;36(32):9642-8. Go to original source...
  19. Azenshtein E, Luboshits G, Shina S, Neumark E, Shahbazian D, Weil M, Wigler N, Keydar I, Ben-Baruch A. The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res 2002;62(4):1093-102.
  20. An G, Wu F, Huang S, Feng L, Bai J, Gu S, Zhao X. Effects of CCL5 on the biological behavior of breast cancer and the mechanisms of its interaction with tumor‑associated macrophages. Oncol Rep 2019;42(6):2499-511. Go to original source...
  21. Velasco-Velázquez M, Jiao X, De La Fuente M, Pestell TG, Ertel A, Lisanti MP, Pestell RG. CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res 2012;72(15):3839-50. Go to original source...
  22. I Imai T, Nagira M, Takagi S, Kakizaki M, Nishimura M, Wang J, Gray PW, Matsushima K, Yoshie O. Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int Immunol 1999;11(1):81-8. Go to original source...
  23. Li YQ, Liu FF, Zhang XM, Guo XJ, Ren MJ, Fu L. Tumor secretion of CCL22 activates intratumoral Treg infiltration and is independent prognostic predictor of breast cancer. PLoS One 2013;8(10):e76379. Go to original source...
  24. Jafarzadeh A, Fooladseresht H, Minaee K, Bazrafshani MR, Khosravimashizi A, Nemati M, Mohammadizadeh M, Mohammadi MM, Ghaderi A. Higher circulating levels of chemokine CCL22 in patients with breast cancer: evaluation of the influences of tumor stage and chemokine gene polymorphism. Tumour Biol 2015;36(2):1163-71. Go to original source...
  25. Liu L, Liu Y, Yan X, Zhou C, Xiong X. The role of granulocyte colony‑stimulating factor in breast cancer development: A review. Mol Med Rep 2020;21(5):2019-29. Go to original source...
  26. Okazaki T, Ebihara S, Asada M, Kanda A, Sasaki H, Yamaya M. Granulocyte colony-stimulating factor promotes tumor angiogenesis via increasing circulating endothelial progenitor cells and Gr1+CD11b+ cells in cancer animal models. Int Immunol 2006;18(1):1-9. Go to original source...
  27. Shojaei F, Wu X, Qu X, Kowanetz M, Yu L, Tan M, Meng YG, Ferrara N. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A 2009;106(16):6742-7. Go to original source...
  28. Hollmén M, Karaman S, Schwager S, Lisibach A, Christiansen AJ, Maksimow M, Varga Z, Jalkanen S, Detmar M. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer. Oncoimmunology 2015;5(3):e1115177. Go to original source...
  29. Gong Z, Ma J, Su H, Guo T, Cai H, Chen Q, Zhao X, Qi J, Du J. Interleukin-1 receptor antagonist inhibits angiogenesis in gastric cancer. Int J Clin Oncol 2018;23(4):659-70. Go to original source...
  30. Miller LJ, Kurtzman SH, Anderson K, Wang Y, Stankus M, Renna M, Lindquist R, Barrows G, Kreutzer DL. Interleukin-1 family expression in human breast cancer: interleukin-1 receptor antagonist. Cancer Invest 2000;18(4):293-302. Go to original source...
  31. Carlberg C. The physiology of vitamin D-far more than calcium and bone. Front Physiol 2014;5:335. Go to original source...
  32. Jeon SM, Shin EA. Exploring vitamin D metabolism and function in cancer. Exp Mol Med 2018;50(4):1-14. Go to original source...
  33. Berridge MJ. Calcium signalling remodelling and disease. Biochem Soc Trans 2012;40(2):297-309. Go to original source...
  34. Wei R, Christakos S. Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D. Nutrients 2015;7(10):8251-60. Go to original source...
  35. Wierzbicka JM, Binek A, Ahrends T, Nowacka JD, Szyd³owska A, Turczyk £, W±siewicz T, Wierzbicki PM, S±dej R, Tuckey RC, Slominski AT, Chybicki J, Adrych K, Kmieæ Z, ¯mijewski MA. Differential antitumor effects of vitamin D analogues on colorectal carcinoma in culture. Int J Oncol 2015;47(3):1084-96. Go to original source...
  36. Moukayed M, Grant WB. Molecular link between vitamin D and cancer prevention. Nutrients 2013;5(10):3993-4021. Go to original source...
  37. Razak S, Afsar T, Almajwal A, Alam I, Jahan S. Growth inhibition and apoptosis in colorectal cancer cells induced by Vitamin D-Nanoemulsion (NVD): involvement of Wnt/β-catenin and other signal transduction pathways. Cell Biosci 2019;9:15. Go to original source...
  38. Zhu Y, Chen P, Gao Y, Ta N, Zhang Y, Cai J, Zhao Y, Liu S, Zheng J. MEG3 Activated by Vitamin D Inhibits Colorectal Cancer Cells Proliferation and Migration via Regulating Clusterin. EBioMedicine 2018;30:148-57. Go to original source...
  39. Skowronski RJ, Peehl DM, Feldman D. Vitamin D and prostate cancer: 1,25 dihydroxyvitamin D3 receptors and actions in human prostate cancer cell lines. Endocrinology 1993;132(5):1952-60. Go to original source...
  40. Yang J, Yan J, Liu B. Targeting VEGF/VEGFR to Modulate Antitumor Immunity. Front Immunol 2018;9:978. Go to original source...
  41. Blutt SE, McDonnell TJ, Polek TC, Weigel NL. Calcitriol-induced apoptosis in LNCaP cells is blocked by overexpression of Bcl-2. Endocrinology 2000;141(1):10-7. Go to original source...
  42. Li P, Li C, Zhao X, Zhang X, Nicosia SV, Bai W. p27(Kip1) stabilization and G(1) arrest by 1,25-dihydroxyvitamin D(3) in ovarian cancer cells mediated through down-regulation of cyclin E/cyclin-dependent kinase 2 and Skp1-Cullin-F-box protein/Skp2 ubiquitin ligase. J Biol Chem 2004;279(24):25260-7. Go to original source...
  43. Li M, Li L, Zhang L, Hu W, Shen J, Xiao Z, Wu X, Chan FL, Cho CH. 1,25-Dihydroxyvitamin D3 suppresses gastric cancer cell growth through VDR- and mutant p53-mediated induction of p21. Life Sci 2017;179:88-97. Go to original source...
  44. Martínez-Reza I, Díaz L, Barrera D, Segovia-Mendoza M, Pedraza-Sánchez S, Soca-Chafre G, Larrea F, García-Becerra R. Calcitriol Inhibits the Proliferation of Triple-Negative Breast Cancer Cells through a Mechanism Involving the Proinflammatory Cytokines IL-1β and TNF-α. J Immunol Res 2019;2019:6384278. Go to original source...
  45. S Segovia-Mendoza M, Díaz L, González-González ME, Martínez-Reza I, García-Quiroz J, Prado-Garcia H, Ibarra-Sánchez MJ, Esparza-López J, Larrea F, García-Becerra R. Calcitriol and its analogues enhance the antiproliferative activity of gefitinib in breast cancer cells. J Steroid Biochem Mol Biol 2015;148:122-31. Go to original source...
  46. Zheng W, Cao L, Ouyang L, Zhang Q, Duan B, Zhou W, Chen S, Peng W, Xie Y, Fan Q, Gong D. Anticancer activity of 1,25-(OH)2D3 against human breast cancer cell lines by targeting Ras/MEK/ERK pathway. Onco Targets Ther 2019;12:721-32. Go to original source...
  47. Bajbouj K, Al-Ali A, Shafarin J, Sahnoon L, Sawan A, Shehada A, Elkhalifa W, Saber-Ayad M, Muhammad JS, Elmoselhi AB, Guraya SY, Hamad M. Vitamin D Exerts Significant Antitumor Effects by Suppressing Vasculogenic Mimicry in Breast Cancer Cells. Front Oncol 2022;12:918340. Go to original source...
  48. Boyle BJ, Zhao XY, Cohen P, Feldman D. Insulin-like growth factor binding protein-3 mediates 1 alpha,25-dihydroxyvitamin d(3) growth inhibition in the LNCaP prostate cancer cell line through p21/WAF1. J Urol 2001;165(4):1319-24. Go to original source...
  49. Cheng YH, Chiang EI, Syu JN, Chao CY, Lin HY, Lin CC, Yang MD, Tsai SY, Tang FY. Treatment of 13-cis retinoic acid and 1,25-dihydroxyvitamin D3 inhibits TNF-alpha-mediated expression of MMP-9 protein and cell invasion through the suppression of JNK pathway and microRNA 221 in human pancreatic adenocarcinoma cancer cells. PLoS One 2021;16(3):e0247550. Go to original source...
  50. Shintani T, Takatsu F, Rosli SNZ, Usui E, Hamada A, Sumi K, Hayashido Y, Toratani S, Okamoto T. Eldecalcitol (ED-71), an analog of 1α,25(OH)2D3, inhibits the growth of squamous cell carcinoma (SCC) cells in vitro and in vivo by down-regulating expression of heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1) and FGF-2. In Vitro Cell Dev Biol Anim 2017;53(9):810-17. Go to original source...
  51. Yuan L, Jiang R, Yang Y, Ding S, Deng H. 1,25-Dihydroxyvitamin D3 inhibits growth of the breast cancer cell line MCF-7 and downregulates cytochrome P4501B1 through the COX-2/PGE2 pathway. Oncol Rep 2012;28(6):2131-7. Go to original source...
  52. El-Sharkawy A, Malki A. Vitamin D Signaling in Inflammation and Cancer: Molecular Mechanisms and Therapeutic Implications. Molecules 2020;25(14):3219. Go to original source...
  53. Min D, Lv XB, Wang X, Zhang B, Meng W, Yu F, Hu H. Downregulation of miR-302c and miR-520c by 1,25(OH)2D3 treatment enhances the susceptibility of tumour cells to natural killer cell-mediated cytotoxicity. Br J Cancer 2013;109(3):723-30. Go to original source...
  54. Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H, Collisson EA, Connor F, Van Dyke T, Kozlov S, Martin P, Tseng TW, Dawson DW, Donahue TR, Masamune A, Shimosegawa T, Apte MV, Wilson JS, Ng B, Lau SL, Gunton JE, Wahl GM, Hunter T, Drebin JA, O'Dwyer PJ, Liddle C, Tuveson DA, Downes M, Evans RM. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 2014;159(1):80-93. Go to original source...
  55. Wu X, Hu W, Lu L, Zhao Y, Zhou Y, Xiao Z, Zhang L, Zhang H, Li X, Li W, Wang S, Cho CH, Shen J, Li M. Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharm Sin B 2019;9(2):203-19. Go to original source...
  56. Ben-Shoshan M, Amir S, Dang DT, Dang LH, Weisman Y, Mabjeesh NJ. 1alpha,25-dihydroxyvitamin D3 (Calcitriol) inhibits hypoxia-inducible factor-1/vascular endothelial growth factor pathway in human cancer cells. Mol Cancer Ther 2007;6(4):1433-9. Go to original source...
  57. Kong F, Li L, Wang G, Deng X, Li Z, Kong X. VDR signaling inhibits cancer-associated-fibroblasts' release of exosomal miR-10a-5p and limits their supportive effects on pancreatic cancer cells. Gut 2019;68(5):950-51. Go to original source...
  58. Demasters G, Di X, Newsham I, Shiu R, Gewirtz DA. Potentiation of radiation sensitivity in breast tumor cells by the vitamin D3 analogue, EB 1089, through promotion of autophagy and interference with proliferative recovery. Mol Cancer Ther 2006;5(11):2786-97. Go to original source...
  59. Mantell DJ, Owens PE, Bundred NJ, Mawer EB, Canfield AE. 1 alpha,25-dihydroxyvitamin D(3) inhibits angiogenesis in vitro and in vivo. Circ Res 2000;87(3):214-20. Go to original source...
  60. Singh SK, Mishra MK, Eltoum IA, Bae S, Lillard JW Jr, Singh R. CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells. Sci Rep 2018;8(1):1323. Go to original source...
  61. Zhang S, Zhong M, Wang C, Xu Y, Gao WQ, Zhang Y. CCL5-deficiency enhances intratumoral infiltration of CD8+ T cells in colorectal cancer. Cell Death Dis 2018;9(7):766. Go to original source...
  62. Tsujikawa T, Yaguchi T, Ohmura G, Ohta S, Kobayashi A, Kawamura N, Fujita T, Nakano H, Shimada T, Takahashi T, Nakao R, Yanagisawa A, Hisa Y, Kawakami Y. Autocrine and paracrine loops between cancer cells and macrophages promote lymph node metastasis via CCR4/CCL22 in head and neck squamous cell carcinoma. Int J Cancer 2013;132(12):2755-66. Go to original source...
  63. Maolake A, Izumi K, Shigehara K, Natsagdorj A, Iwamoto H, Kadomoto S, Takezawa Y, Machioka K, Narimoto K, Namiki M, Lin WJ, Wufuer G, Mizokami A. Tumor-associated macrophages promote prostate cancer migration through activation of the CCL22-CCR4 axis. Oncotarget 2017;8(6):9739-51. Go to original source...
  64. Wang JJ, Lei KF, Han F. Tumor microenvironment: recent advances in various cancer treatments. Eur Rev Med Pharmacol Sci 2018;22(12):3855-64.
  65. Yang P, Li QJ, Feng Y, Zhang Y, Markowitz GJ, Ning S, Deng Y, Zhao J, Jiang S, Yuan Y, Wang HY, Cheng SQ, Xie D, Wang XF. TGF-β-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 2012;22(3):291-303. Go to original source...
  66. Li JY, Ou ZL, Yu SJ, Gu XL, Yang C, Chen AX, Di GH, Shen ZZ, Shao ZM. The chemokine receptor CCR4 promotes tumor growth and lung metastasis in breast cancer. Breast Cancer Res Treat 2012;131(3):837-48. Go to original source...
  67. Dobrenis K, Gauthier LR, Barroca V, Magnon C. Granulocyte colony-stimulating factor off-target effect on nerve outgrowth promotes prostate cancer development. Int J Cancer 2015;136(4):982-8. Go to original source...
  68. Karagiannidis I, de Santana Van Vilet E, Said Abu Egal E, Phinney B, Jacenik D, Prossnitz ER, Beswick EJ. G-CSF and G-CSFR Induce a Pro-Tumorigenic Macrophage Phenotype to Promote Colon and Pancreas Tumor Growth. Cancers (Basel) 2020;12(10):2868. Go to original source...
  69. Morris KT, Khan H, Ahmad A, Weston LL, Nofchissey RA, Pinchuk IV, Beswick EJ. G-CSF and G-CSFR are highly expressed in human gastric and colon cancers and promote carcinoma cell proliferation and migration. Br J Cancer 2014;110(5):1211-20. Go to original source...
  70. Zhang W, Karagiannidis I, Van Vliet ES, Yao R, Beswick EJ, Zhou A. Granulocyte colony-stimulating factor promotes an aggressive phenotype of colon and breast cancer cells with biochemical changes investigated by single-cell Raman microspectroscopy and machine learning analysis. Analyst 2021;146(20):6124-31. Go to original source...
  71. Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood 1991;77(8):1627-52. Go to original source...
  72. Lewis AM, Varghese S, Xu H, Alexander HR. Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J Transl Med 2006;4:48. Go to original source...
  73. Ma J, Liang W, Qiang Y, Li L, Du J, Pan C, Chen B, Zhang C, Chen Y, Wang Q. Interleukin-1 receptor antagonist inhibits matastatic potential by down-regulating CXCL12/CXCR4 signaling axis in colorectal cancer. Cell Commun Signal 2021;19(1):122. Go to original source...
  74. Ma J, Sun X, Guo T, Su H, Chen Q, Gong Z, Qi J, Zhao X. Interleukin-1 receptor antagonist inhibits angiogenesis via blockage IL-1α/PI3K/NF-κβ pathway in human colon cancer cell. Cancer Manag Res 2017;9:481-93. Go to original source...
  75. Guo B, Fu S, Zhang J, Liu B, Li Z. Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci Rep 2016;6:36107. Go to original source...
  76. Lindahl G, Saarinen N, Abrahamsson A, Dabrosin C. Tamoxifen, flaxseed, and the lignan enterolactone increase stroma- and cancer cell-derived IL-1Ra and decrease tumor angiogenesis in estrogen-dependent breast cancer. Cancer Res 2011;71(1):51-60. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.