Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2021, 165(3):249-257 | DOI: 10.5507/bp.2021.048

The high-performance technology CRISPR/Cas9 improves knowledge and management of acute myeloid leukemia

Romeo Gabriel Mihailaa, b, Diana Topirceanb
a Faculty of Medicine, "Lucian Blaga" University of Sibiu, Romania
b Department of Hematology, Emergency County Clinical Hospital Sibiu, Romania

Knowledge on acute myeloid leukemia pathogenesis and treatment has progressed recently, but not enough to provide ideal management. Improving the prognosis of acute myeloid leukemia patients depends on advances in molecular biology for the detection of new therapeutic targets and the production of effective drugs. The CRISPR/Cas9 technology allows gene insertions and deletions and it is the first step in investigating the function of their encoded proteins. Thus, new experimental models have been developed and progress has been made in understanding protein metabolism, antitumor activity, leukemic cell maintenance, differentiation, growth, apoptosis, and self-renewal, the combined pathogenetic mechanisms involved in leukemogenesis. The CRISPR/Cas9 system is used to understand drug resistance and find solutions to overcome it. The therapeutic progress achieved using the CRISPR/Cas9 system is remarkable. FST gene removal inhibited acute myeloid leukemia cell growth. Lysine acetyltransferase gene deletion contributed to decreased proliferation rate, increased apoptosis, and favored differentiation of acute myelid leukemia cells carrying MLL-X gene fusions. The removal of CD38 gene from NK cells decreased NK fratricidal cells contributing to increased efficacy of new CD38 CAR-NK cells to target leukemic blasts. BCL2 knockout has synergistic effects with FLT3 inhibitors. Exportin 1 knockout is synergistic with midostaurin treatment in acute myeloid leukemia with FLT3-ITD mutation. Using the results of CRISPR/Cas9 libraries and technology application will allow us to get closer to achieving the goal of curing acute myeloid leukemia in the coming decades.

Keywords: acute myeloid leukemia, BCL2, CD38, CRISPR/Cas9, FLT3 inhibitors, IDH2

Received: May 7, 2021; Revised: July 13, 2021; Accepted: July 14, 2021; Prepublished online: August 24, 2021; Published: September 20, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Mihaila, R.G., & Topircean, D. (2021). The high-performance technology CRISPR/Cas9 improves knowledge and management of acute myeloid leukemia. Biomedical papers165(3), 249-257. doi: 10.5507/bp.2021.048
Download citation

References

  1. Lewis AH, Bridges CS, Punia VS, Cooper AFJ, Puppi M, Lacorazza HD. Krüppel-like factor 4 promotes survival and expansion in acute myeloid leukemia cells. Oncotarget 2021;12(4):255-67. Go to original source... Go to PubMed...
  2. Soares F, Chen B, Lee JB, Ahmed M, Ly D, Tin E, Kang H, Zeng Y, Akhtar N, Minden MD, He H, Zhang L. CRISPR screen identifies genes that sensitize AML cells to double negative T cell therapy. Blood 2020 Dec 3. [Epub ahead of print] doi: 10.1182/blood.2019004108 Go to original source... Go to PubMed...
  3. Pasquer H, Tostain M, Kaci N, Roux B, Benajiba L. Descriptive and Functional Genomics in Acute Myeloid Leukemia (AML): Paving the Road for a Cure. Cancers (Basel) 2021;13(4):748. Go to original source... Go to PubMed...
  4. Singh A. Modulating Gene Expression - Abridging the RNAi and CRISPR-Cas9 Technologies. In: Singh A, Khan MW. Modulating Gene Expression. IntechOpen. http://dx.doi.org/10.5772/intechopen.84229 Go to original source...
  5. García-Tuñon I, Vuelta E, Pérez-Ramos S, Hernández-Rivas JM, Méndez L, Herrero M, Sanchez-Martin M. CRISPR-ERA for switching off (onco) genes. In: Singh A, Khan MW. Modulating Gene Expression. IntechOpen. http://dx.doi.org/10.5772/intechopen.80245 Go to original source...
  6. Liu Q, Garcia M, Wang S, Chen CW. Therapeutic Target Discovery Using High-Throughput Genetic Screens in Acute Myeloid Leukemia. Cells 2020;9(8):1888. Go to original source... Go to PubMed...
  7. Wang T, Pine AR, Kotini AG, Yuan H, Zamparo L, Starczynowski DT, Leslie C, Papapetrou EP. Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets. Cell Stem Cell 2021. [Epub ahead of print] doi: 10.1016/j.stem.2021.01.011 Go to original source... Go to PubMed...
  8. Schieber M, Marinaccio C, Bolanos LC, Haffey WD, Greis KD, Starczynowski DT, Crispino JD. FBXO11 is a candidate tumor suppressor in the leukemic transformation of myelodysplastic syndrome. Blood Cancer J 2020;10(10):98. Go to original source... Go to PubMed...
  9. Barwe SP, Sidhu I, Kolb EA, Gopalakrishnapillai A. Modeling Transient Abnormal Myelopoiesis Using Induced Pluripotent Stem Cells and CRISPR/Cas9 Technology. Mol Ther Methods Clin Dev 2020;19:201-9. Go to original source... Go to PubMed...
  10. Sarrou E, Richmond L, Carmody RJ, Gibson B, Keeshan K. CRISPR Gene Editing of Murine Blood Stem and Progenitor Cells Induces MLL-AF9 Chromosomal Translocation and MLL-AF9 Leukaemogenesis. Int J Mol Sci 2020;21(12):4266. Go to original source... Go to PubMed...
  11. Secker KA, Bruns L, Keppeler H, Jeong J, Hentrich T, Schulze-Hentrich JM, Mankel B, Fend F, Schneidawind D, Schneidawind C. Only Hematopoietic Stem and Progenitor Cells from Cord Blood Are Susceptible to Malignant Transformation by MLL-AF4 Translocations. Cancers (Basel) 2020;12(6):1487. Go to original source... Go to PubMed...
  12. Barghout SH, Aman A, Nouri K, Blatman Z, Arevalo K, Thomas GE, MacLean N, Hurren R, Ketela T, Saini M, Abohawya M, Kiyota T, Al-Awar R, Schimmer AD. A genome-wide CRISPR/Cas9 screen in acute myeloid leukemia cells identifies regulators of TAK-243 sensitivity. JCI Insight 2021;6(5):141518. Go to original source...
  13. Surka C, Jin L, Mbong N, Lu CC, Jang IS, Rychak E, Mendy D, Clayton T, Tindall E, Hsu C, Fontanillo C, Tran E, Contreras A, Ng SWK, Matyskiela M, Wang K, Chamberlain P, Cathers B, Carmichael J, Hansen J, Wang JCY, Minden MD, Fan J, Pierce DW, Pourdehnad M, Rolfe M, Lopez-Girona A, Dick JE, Lu G. CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia stem cells. Blood 2021;137(5):661-77. Go to original source... Go to PubMed...
  14. Guo X, Mahlakõiv T, Ye Q, Somanchi S, He S, Rana H, DiFiglia A, Gleason J, van der Touw W, Hariri R, Zhang X. CBLB ablation with CRISPR/Cas9 enhances cytotoxicity of human placental stem cell-derived NK cells for cancer immunotherapy. J Immunother Cancer 2021;9(3):e001975. Go to original source... Go to PubMed...
  15. Saenz DT, Fiskus W, Mill CP, Perera D, Manshouri T, Lara BH, Karkhanis V, Sharma S, Horrigan SK, Bose P, Kadia TM, Masarova L, DiNardo CD, Borthakur G, Khoury JD, Takahashi K, Bhaskara S, Lin CY, Green MR, Coarfa C, Crews CM, Verstovsek S, Bhalla KN. Mechanistic basis and efficacy of targeting the β-catenin-TCF7L2-JMJD6-c-Myc axis to overcome resistance to BET inhibitors. Blood 2020;135(15):1255-69. Go to original source... Go to PubMed...
  16. Zha J, Lai Q, Deng M, Shi P, Zhao H, Chen Q, Wu H, Xu B. Disruption of CTCF Boundary at HOXA Locus Promote BET Inhibitors' Therapeutic Sensitivity in Acute Myeloid Leukemia. Stem Cell Rev Rep 2020;16(6):1280-91. Go to original source... Go to PubMed...
  17. Wang E, Zhou H, Nadorp B, Cayanan G, Chen X, Yeaton AH, Nomikou S, Witkowski MT, Narang S, Kloetgen A, Thandapani P, Ravn-Boess N, Tsirigos A, Aifantis I. Surface antigen-guided CRISPR screens identify regulators of myeloid leukemia differentiation. Cell Stem Cell 2021;28(4):718-31.e6. Go to original source... Go to PubMed...
  18. Zhu Z, Yue J, Yen A. Depleting interferon regulatory factor-1(IRF-1) with CRISPR/Cas9 attenuates inducible oxidative metabolism without affecting RA-induced differentiation in HL-60 human AML cells. FASEB Bioadv 2020;2(6):354-64. Go to original source... Go to PubMed...
  19. Steinauer N, Guo C, Zhang J. The transcriptional corepressor CBFA2T3 inhibits all- trans-retinoic acid-induced myeloid gene expression and differentiation in acute myeloid leukemia. J Biol Chem 2020;295(27):8887-900. Go to original source... Go to PubMed...
  20. Pauli C, Liu Y, Rohde C, Cui C, Fijalkowska D, Gerloff D, Walter C, Krijgsveld J, Dugas M, Edemir B, Pabst C, Müller LP, Zhou F, Müller-Tidow C. Site-specific methylation of 18S ribosomal RNA by SNORD42A is required for acute myeloid leukemia cell proliferation. Blood 2020;135(23):2059-70. Go to original source... Go to PubMed...
  21. Marinaccio C, Suraneni P, Celik H, Volk A, Wen QJ, Ling T, Bulic M, Lasho T, Koche RP, Famulare CA, Farnoud N, Stein B, Schieber M, Gurbuxani S, Root DE, Younger ST, Hoffman R, Gangat N, Ntziachristos P, Chandel NS, Levine RL, Rampal RK, Challen GA, Tefferi A, Crispino JD. LKB1/STK11 is a tumor suppressor in the progression of myeloproliferative neoplasms. Cancer Discov 2021. [Epub ahead of print] doi: 10.1158/2159-8290.CD-20-1353 Go to original source... Go to PubMed...
  22. Jin P, Tan Y, Zhang W, Li J, Wang K. Prognostic alternative mRNA splicing signatures and associated splicing factors in acute myeloid leukemia. Neoplasia 2020;22(9):447-57. Go to original source... Go to PubMed...
  23. Jensen PJ, Carlet M, Schlenk RF, Weber A, Kress J, Brunner I, S³abicki M, Grill G, Weisemann S, Cheng YY, Jeremias I, Scholl C, Fröhling S. Requirement for LIM kinases in acute myeloid leukemia. Leukemia 2020;34(12):3173-85. Go to original source... Go to PubMed...
  24. Ramakrishnan R, Peña-Martínez P, Agarwal P, Rodriguez-Zabala M, Chapellier M, Högberg C, Eriksson M, Yudovich D, Shah M, Ehinger M, Nilsson B, Larsson J, Hagström-Andersson A, Ebert BL, Bhatia R, Järås M. CXCR4 Signaling Has a CXCL12-Independent Essential Role in Murine MLL-AF9-Driven Acute Myeloid Leukemia Cell Rep 2020;31(8):107684. Go to original source... Go to PubMed...
  25. Yamamoto A, Kurata M, Onishi I, Sugita K, Matsumura M, Ishibashi S, Ikeda M, Yamamoto K, Kitagawa M. CRISPR screening identifies M1AP as a new MYC regulator with a promoter-reporter system. PeerJ 2020;8:e9046. Go to original source... Go to PubMed...
  26. Chen SJ, Bao L, Keefer K, Shanmughapriya S, Chen L, Lee J, Wang JF, Zhang XQ, Hirschler-Laszkiewicz I, Merali S, Merali C, Imamura Y, Dovat S, Madesh M, Cheung JY, Wang HG, Miller BA. Transient receptor potential ion channel TRPM2 promotes AML proliferation and survival through modulation of mitochondrial function, ROS, and autophagy. Cell Death Dis 2020;11(4):247. Go to original source... Go to PubMed...
  27. Khan DH, Mullokandov M, Wu Y, Voisin V, Gronda M, Hurren R, Wang X, MacLean N, Jeyaraju DV, Jitkova Y, Xu GW, Laister R, Seneviratne A, Blatman ZM, Ketela T, Bader GD, Marhon SA, De Carvalho DD, Minden MD, Gross A, Schimmer AD. Mitochondrial carrier homolog 2 is necessary for AML survival. Blood 2020;136(1):81-92. Go to original source... Go to PubMed...
  28. Lin KH, Rutter JC, Xie A, Pardieu B, Winn ET, Bello RD, Forget A, Itzykson R, Ahn YR, Dai Z, Sobhan RT, Anderson GR, Singleton KR, Decker AE, Winter PS, Locasale JW, Crawford L, Puissant A, Wood KC. Using antagonistic pleiotropy to design a chemotherapy-induced evolutionary trap to target drug resistance in cancer. Nat Genet 2020;52(4):408-17. Go to original source... Go to PubMed...
  29. Zhang H, Yuan Q, Pan Z, Ling X, Tan Q, Wu M, Zheng D, Xie P, Xie D, Liu L. Up-regulation of DNMT3b contributes to HOTAIRM1 silencing via DNA hypermethylation in cells transformed by long-term exposure to hydroquinone and workers exposed to benzene. Toxicol Lett 2020;322:12-9. Go to original source... Go to PubMed...
  30. Schneider E, Pochert N, Ruess C, MacPhee L, Escano L, Miller C, Krowiorz K, Malmberg ED, Heravi-Moussavi A, Lorzadeh A, Ashouri A, Grasedieck S, Sperb N, Kopparapu PK, Iben S, Staffas A, Xiang P, Rösler R, Kanduri M, Larsson E, Fogelstrand L, Döhner H, Döhner K, Wiese S, Hirst M, Humphries RK, Palmqvist L, Kuchenbauer F, Rouhi A. MicroRNA-708 is a novel regulator of the Hoxa9 program in myeloid cells. Leukemia 2020;34(5):1253-65. Go to original source... Go to PubMed...
  31. Park H, Kim D, Kim D, Park J, Koh Y, Yoon SS. Truncation of MYH8 tail in AML: a novel prognostic marker with increase cell migration and epithelial-mesenchymal transition utilizing RAF/MAPK pathway. Carcinogenesis 2020;41(6):817-27. Go to original source... Go to PubMed...
  32. Sharma A, Jyotsana N, Gabdoulline R, Heckl D, Kuchenbauer F, Slany RK, Ganser A, Heuser M. Meningioma 1 is indispensable for mixed lineage leukemia-rearranged acute myeloid leukemia. Haematologica 2020;105(5):1294-305. Go to original source... Go to PubMed...
  33. Damnernsawad A, Bottomly D, Kurtz SE, Eide CA, McWeeney SK, Tyner JW, Nechiporuk T. Genome-wide CRISPR screen identifies regulators of MAPK and MTOR pathways mediating sorafenib resistance in acute myeloid leukemia. Haematologica 2020 Dec 30. [Epub ahead of print] doi: 10.3324/haematol.2020.257964 Go to original source... Go to PubMed...
  34. Hou D, Wang B, You R, Wang X, Liu J, Zhan W, Chen P, Qin T, Zhang X, Huang H. Stromal cells promote chemoresistance of acute myeloid leukemia cells via activation of the IL-6/STAT3/OXPHOS axis. Ann Transl Med 2020;8(21):1346. Go to original source... Go to PubMed...
  35. Erbani J, Tay J, Barbier V, Levesque JP, Winkler IG. Acute Myeloid Leukemia Chemo-Resistance Is Mediated by E-selectin Receptor CD162 in Bone Marrow Niches. Front Cell Dev Biol 2020;8:668. Go to original source...
  36. Gurney M, Stikvoort A, Nolan E, Kirkham-McCarthy L, Khoruzhenko S, Shivakumar R, Zweegman S, Van de Donk NWCJ, Mutis T, Szegezdi E, Sarkar S, O'Dwyer M. CD38 knockout natural killer cells expressing an affinity optimized CD38 chimeric antigen receptor successfully target acute myeloid leukemia with reduced effector cell fratricide. Haematologica 2020 Dec 30. [Epub ahead of print] doi: 10.3324/haematol.2020.271908 Go to original source... Go to PubMed...
  37. Brinton LT, Zhang P, Williams K, Canfield D, Orwick S, Sher S, Wasmuth R, Beaver L, Cempre C, Skinner J, Cannon M, Govande M, Harrington B, Lehman A, Byrd JC, Lapalombella R, Blachly JS. Synergistic effect of BCL2 and FLT3 co-inhibition in acute myeloid leukemia. J Hematol Oncol 2020;13(1):139. Go to original source... Go to PubMed...
  38. Brinton LT, Sher S, Williams K, Canfield D, Orwick S, Wasmuth R, Cempre C, Skinner J, Lehman A, Blachly JS, Byrd JC, Lapalombella R. Cotargeting of XPO1 Enhances the Antileukemic Activity of Midostaurin and Gilteritinib in Acute Myeloid Leukemia. Cancers (Basel) 2020;12(6):1574. Go to original source... Go to PubMed...
  39. He BL, Yang N, Man CH, Ng NKL, Cher CY, Leung HC, Kan LLH, Cheng BYL, Lam SSY, Wang MLL, Zhang CX, Kwok H, Cheng G, Sharma R, Ma ACH, So CWE, Kwong YL, Leung AYH. Follistatin is a novel therapeutic target and biomarker in FLT3/ITD acute myeloid leukemia. EMBO Mol Med 2020;12(4):e10895. Go to original source... Go to PubMed...
  40. Zhou Y, Takacs GP, Lamba JK, Vulpe C, Cogle CR. Functional Dependency Analysis Identifies Potential Druggable Targets in Acute Myeloid Leukemia. Cancers (Basel) 2020;12(12):3710. Go to original source... Go to PubMed...
  41. Au YZ, Gu M, De Braekeleer E, Gozdecka M, Aspris D, Tarumoto Y, Cooper J, Yu J, Ong SH, Chen X, Tzelepis K, Huntly BJP, Vassiliou G, Yusa K. KAT7 is a genetic vulnerability of acute myeloid leukemias driven by MLL rearrangements. Leukemia 2020 Aug 6. [Epub ahead of print] doi: 10.1038/s41375-020-1001-z Go to original source... Go to PubMed...
  42. Jin S, Cojocari D, Purkal JJ, Popovic R, Talaty NN, Xiao Y, Solomon LR, Boghaert ER, Leverson JD, Phillips DC. 5-Azacitidine Induces NOXA to Prime AML Cells for Venetoclax-Mediated Apoptosis. Clin Cancer Res 2020;26(13):3371-83. Go to original source... Go to PubMed...
  43. Dutta R, Zhang TY, Köhnke T, Thomas D, Linde M, Gars M, Stafford M, Kaur S, Nakauchi Y, Yin R, Azizi A, Narla A, Majeti R. Enasidenib drives human erythroid differentiation independently of isocitrate dehydrogenase 2. J Clin Invest 2020;130(4):1843-9. Go to original source... Go to PubMed...
  44. Deb G, Wingelhofer B, Amaral FMR, Maiques-Diaz A, Chadwick JA, Spencer GJ, Williams EL, Leong HS, Maes T, Somervaille TCP. Pre-clinical activity of combined LSD1 and mTORC1 inhibition in MLL-translocated acute myeloid leukaemia. Leukemia 2020;34(5):1266-77. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.