Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2019, 163(2):132-140 | DOI: 10.5507/bp.2018.048

Serum C-peptide level correlates with the course of muscle tissue healing in the rabbit model of critical limb ischemia

Zdenek Taubera*, Katerina Cizkovaa,b*, Maria Janikovac,d, Jana Jurcikovae, Katerina Vitkovae, Lubomir Pavliskae, Ludmila Porubovaf, Agata Krauzeg, Carlos Fernandezg, Frantisek Jaluvkah, Iveta Spackovai, Ivo Lochmanj, Martin Prochazkac, Brian H. Johnstonek, Vaclav Prochazkal
a Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
b Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
c Department of Medical Genetics, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
d Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
e Department of Deputy Director of Science and Research, University Hospital Ostrava, Czech Republic
f 4MEDi-CBTD, Ostrava, Czech Republic
g Center for Cardiovascular Research and Development, American Heart of Poland, Inc., Kostkowice, Poland
h Department of Surgery, University Hospital Ostrava, Czech Republic
i Laboratore AGEL, a.s., Novy Jicin, Czech Republic
j SPADIA LAB a.s., Ostrava, Czech Republic
k NeuroFX, Inc, Indianapolis, Indiana, USA
l Radiodiagnostic Institute, University Hospital Ostrava, Czech Republic

Aim: The therapeutic potential of adipose-derived stem cell conditioned medium (ASC-CM) was studied in the rabbit model of critical limb ischemia (CLI).

Methods: Rabbits received treatment with ASC-CM or placebo. Gastrocnemius muscle tissue was collected 35 days after ischemia induction. Ischemic changes were evaluated in hematoxylin-eosin stained tissues for early (necrotic lesions/granulation tissue) and late (fibrous scars) phases of tissue repair. The expression of proangiogenic miR-126 was also evaluated using in situ hybridization. The levels of cytokines, insulin, and C-peptide were measured in blood.

Results: Early repair phases were observed more often in placebo-treated samples (45.5%) than in ASC-CM-treated ones (22.2%). However, the difference was not statistically significant. We demonstrated a statistically significant positive correlation between the early healing phases in tissue samples and C-peptide levels in peripheral blood. The expression of proangiogenic miR-126 was also shown in a number of structures in all phases of ischemic tissue healing.

Conclusion: Based on our results, we believe that treatment with ASC-CM has the potential to accelerate the healing process in ischemic tissues in the rabbit model of CLI. The whole healing process was accompanied by miR-126 tissue expression. C-peptide could be used to monitor the course of the tissue healing process.

Keywords: mesenchymal stem cells, tissue healing, cytokines, C-peptide, miR-126, critical limb ischemia

Received: March 11, 2018; Accepted: August 17, 2018; Prepublished online: September 7, 2018; Published: June 25, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Tauber, Z., Cizkova, K., Janikova, M., Jurcikova, J., Vitkova, K., Pavliska, L., ... Prochazka, V. (2019). Serum C-peptide level correlates with the course of muscle tissue healing in the rabbit model of critical limb ischemia. Biomedical papers163(2), 132-140. doi: 10.5507/bp.2018.048
Download citation

References

  1. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res 2010; 89(3):219-29. Go to original source... Go to PubMed...
  2. Baum CL, Arpey CJ. Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg 2005;31(6):674-86. Go to original source... Go to PubMed...
  3. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999;341(10):738-46. Go to original source... Go to PubMed...
  4. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 1993;122(1):103-11. Go to original source... Go to PubMed...
  5. Vyalov S, Desmouliere A, Gabbiani G. GM-CSF-induced granulation tissue formation: relationships between macrophage and myofibroblast accumulation. Virchows Archiv B Cell Pathol Incl Mol Pathol 1993;63(4):231-9. Go to original source... Go to PubMed...
  6. Ramsey SD, Newton K, Blough D, McCulloch DK, Sandhu N, Reiber GE, Wagner EH. Incidence, outcomes, and cost of foot ulcers in patients with diabetes. Diabetes Care 1999;22(3):382-7. Go to original source... Go to PubMed...
  7. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet 2005; 366(9498):1736-43. Go to original source... Go to PubMed...
  8. Prochazka V, Jurcikova J, Lassak O, Vitkova K, Pavliska L, Porubova L, Buszman PP, Krauze A, Fernandez C, Jaluvka F, Spackova I, Lochman I, Jana D, Merfeld-Clauss S, March KL, Traktuev DO, Johnstone BN. Therapeutic Potential of Adipose-Derived Therapeutic Factor Concentrate for Treating Critical Limb Ischemia. Cell Transplant 2016;25(9):1623-33. Go to original source... Go to PubMed...
  9. Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 2008;102(1):77-85. Go to original source... Go to PubMed...
  10. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013;15(6):641-8. Go to original source... Go to PubMed...
  11. Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 2004;110(3):349-55. Go to original source... Go to PubMed...
  12. Moon MH, Kim SY, Kim YJ, Kim SJ, Lee JB, Bae YC, Sung SM, Jung JS. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cellular Physiol Biochem 2006;17(5-6):279-90. Go to original source... Go to PubMed...
  13. Bura A, Planat-Benard V, Bourin P, Silvestre JS, Gross F, Grolleau JL, Saint-Lebese B, Peyafitte JA, Fleury S, Gadelorge M, Taurand M, Dupuis-Coronas S, Leobon B, Casteilla L. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy 2014;16(2):245-57. Go to original source... Go to PubMed...
  14. Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y, Kikuchi Y, Saito Y, Tamai K, Ogihara T, Kaneda Y. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol 2005;25(12):2542-7. Go to original source... Go to PubMed...
  15. Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 2004;109(5):656-63. Go to original source... Go to PubMed...
  16. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006;98(5):1076-84. Go to original source... Go to PubMed...
  17. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008;103(11):1204-19. Go to original source... Go to PubMed...
  18. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004;94(5):678-85. Go to original source... Go to PubMed...
  19. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 2013;45:e54. Go to original source... Go to PubMed...
  20. Bhang SH, Lee S, Shin JY, Lee TJ, Jang HK, Kim BS. Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis. Mol Ther 2014;22(4):862-72. Go to original source... Go to PubMed...
  21. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 2008;15(2):261-71. Go to original source... Go to PubMed...
  22. van Solingen C, Seghers L, Bijkerk R, Duijs JM, Roeten MK, van Oeveren-Rietdijk AM, Baelde HJ, Monge M, Vos JB, de Boer HC, Quax PH, Rabelink TJ, van Zonneveld AJ. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 2009;13(8A):1577-85. Go to original source... Go to PubMed...
  23. Caporali A, Emanueli C. MicroRNAs in Postischemic Vascular Repair. Cardiol Res Pract 2012;2012:486702. Go to original source... Go to PubMed...
  24. King AJ. The use of animal models in diabetes research. Br J Pharmacol 2012;166(3):877-94. Go to original source... Go to PubMed...
  25. Wang J, Wan R, Mo Y, Zhang Q, Sherwood LC, Chien S. Creating a long-term diabetic rabbit model. Exp Diabetes Res 2010;2010:289614. Go to original source... Go to PubMed...
  26. Alkizim FO, Kitua M, Matheka DM. Peculiar glycemic patterns in alloxaninduced diabetes animal model. Afr J Pharmacol Ther 2012;1(1):30-4.
  27. Beidler SK, Douillet CD, Berndt DF, Keagy BA, Rich PB, Marston WA. Inflammatory cytokine levels in chronic venous insufficiency ulcer tissue before and after compression therapy. J Vasc Surg 2009;49(4):1013-20. Go to original source... Go to PubMed...
  28. Gohel MS, Windhaber RA, Tarlton JF, Whyman MR, Poskitt KR. The relationship between cytokine concentrations and wound healing in chronic venous ulceration. J Vasc Surg 2008;48(5):1272-7. Go to original source... Go to PubMed...
  29. Murphy MA, Joyce WP, Condron C, Bouchier-Hayes D. A reduction in serum cytokine levels parallels healing of venous ulcers in patients undergoing compression therapy. Eur J Vasc Endovasc Surg 2002;23(4):349-52. Go to original source... Go to PubMed...
  30. Wong VW, Crawford JD. Vasculogenic cytokines in wound healing. Biomed Res Int 2013;2013:190486. Go to original source... Go to PubMed...
  31. Rissanen TT, Vajanto I, Hiltunen MO, Rutanen J, Kettunen MI, Niemi M, Leppanen P, Turunen MP, Markkanen JE, Arve K, ALhava E, Kauppinen RA, Yla-Herttuala S. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 (KDR/Flk-1) in ischemic skeletal muscle and its regeneration. Am J Pathol 2002;160(4):1393-403. Go to original source... Go to PubMed...
  32. Dubsky M, Jirkovska A, Bem R, Fejfarova V, Varga M, Kolesar L, Pagacova L, Sykova E, Jude EB. Role of serum levels of angiogenic cytokines in assessment of angiogenesis after stem cell therapy of diabetic patients with critical limb ischemia. Cell Transplantat 2014;23(12):1517-23. Go to original source... Go to PubMed...
  33. Lim YC, Bhatt MP, Kwon MH, Park D, Na S, Kim YM, Ha KS. Proinsulin C-peptide prevents impaired wound healing by activating angiogenesis in diabetes. J Invest Dermatol 2015;135(1):269-78. Go to original source... Go to PubMed...
  34. Jones AG, Hattersley AT. The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet Med 2013;30(7):803-17. Go to original source... Go to PubMed...
  35. Walcher D, Babiak C, Poletek P, Rosenkranz S, Bach H, Betz S, Durst R, Grub M, Hombach V, Strong J, Marx N. C-Peptide induces vascular smooth muscle cell proliferation: involvement of SRC-kinase, phosphatidylinositol 3-kinase, and extracellular signal-regulated kinase 1/2. Circ Res 2006;99(11):1181-7. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.