Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015, 159(1):012-017 | DOI: 10.5507/bp.2013.076

Chemical decellularization: a promising approach for preparation of extracellular matrix

Hana Hrebikova, Daniel Diaz, Jaroslav Mokry
Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove

Background: A biological scaffold from extracellular matrix can be produced by a variety of decellularization methods whose caveat consists in efficiently eliminating cells from the treated tissue. This scaffold can be used in diverse applications for tissue engineering and organ regeneration. Preservation of the extracellular matrix ultrastructure is highly desirable because of its unique architecture, contained growth factors and decreased immunological response. All of these properties provide attachment sites and adequate environment for cells colonizing this scaffold, reconstituting the decellularized organ. This review briefly describes chemical decellularization methods, evaluation of these protocols and the role of ECM in tissue engineering.

Conclusion: Chemical decellularization is an often used method for scaffold preparation and makes possible a well-preserved three dimensional structure of extracellular matrix.

Keywords: chemical decellularization, detergent, extracellular matrix, cell lysis

Received: March 25, 2013; Accepted: September 24, 2013; Prepublished online: October 18, 2013; Published: March 9, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hrebikova, H., Diaz, D., & Mokry, J. (2015). Chemical decellularization: a promising approach for preparation of extracellular matrix. Biomedical papers159(1), 012-017. doi: 10.5507/bp.2013.076
Download citation

References

  1. Wainwright D. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 1995;21(4):243-48. Go to original source... Go to PubMed...
  2. Misra S, Raj PK, Tarr SM, Treat RC. Results of AlloDerm use in abdominal hernia repair.Hernia 2008;12(3):247-50. Go to original source... Go to PubMed...
  3. Badylak, SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 2004;12(3-4):367-7. Go to original source... Go to PubMed...
  4. Kolker AR, Brown DJ, Redstone JS, Scarpinato VM, Wallack MK. Multilayer reconstruction of abdominal wall deffects with acellular dermal allograft (AlloDerm) and component separation. Ann Plast Surg 2005;55(1):36-42. Go to original source... Go to PubMed...
  5. Parker DM, Armstrong PJ, Frizzi JD, North JH. Porcine dermal collagen (Permacol) for abdominal wall reconstruction. Curr Surg 2006;63(4):255-8. Go to original source... Go to PubMed...
  6. Aimoli CG, Noguiera GM, Nascimento LS, Baceti A, Leirner AA, Maizato MJ, Higa OZ, Polakiewicz B, Pitombo RN, Beppu MM. Lyophilized bovine pericardium treated with a phenethylamine-diepoxide as an alternative to preventing calcification of cardiovascular bioprosthesis: preliminary calcification results. Artif Organs 2007;31(4):278-3. Go to original source... Go to PubMed...
  7. Hung SH, Su CH, Lee FP, Tseng H. Larynx decellularization: combining freeze-drying and sonication as an effective method. J Voice 2013;27(3):289-94. Go to original source... Go to PubMed...
  8. El-Sabban ME, El-Khoury H, Hamdan-Khalil R, Sinder-Pedersen S, Bazarbachi A. Xenogenic bone matrix extracts induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. Regen Med 2007;2(4):383-90. Go to original source... Go to PubMed...
  9. Hashimoto Y, Funamoto S, Sasaki S, Honda T, Hattori S, Nam K, Kimura T, Mochizuki M, Fujisato T, Kobayashi H, Kishida A. Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials 2010;31(14):3941-8. Go to original source... Go to PubMed...
  10. Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, Niwaya K, Kitamura S, Fujisato T, Kishida A. The use of high-hydrostatic pressure treatment to decellularized blood vessels. Biomaterials 2010;31(13):3590-5. Go to original source... Go to PubMed...
  11. Badylak SF. The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 2002;13(5):377-83. Go to original source... Go to PubMed...
  12. Vanderrest M, Garrone R. Collagen family of proteins. FASEB J 1991;5(13):2814-23. Go to original source... Go to PubMed...
  13. Schwarzbauer JE. Fibronectin: from gene to protein. Curr Opion Cell Biol 1991;3(5):786-91. Go to original source...
  14. Perniconi B, Costa A, Aulino P, Teodori P, Adamo S, Coletti D. The pro-myogenic environment provided by whole organ-scale acellular scaffolds from skeletal muscle. Biomaterials 2011;32(31):7870-7882. Go to original source... Go to PubMed...
  15. Hauschka SD, Konigsberg IR. The influence of collagen on the development of muscle clones. Proc Natl Acad Sci 1966;55(1):119-26. Go to original source... Go to PubMed...
  16. Wessells NK, Cohen JH. Effects of collagenase on developing epithelia in vitro: Lung, ureteric bud and pancreas. Dev Biol 1968;18(3):294-309. Go to original source... Go to PubMed...
  17. Bader A, Schilling T, Teebken OE. Tissue engineering of heart valve - human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg 1998;14(3):279-84. Go to original source... Go to PubMed...
  18. Booth C, Korossis SA, Wilcox HE, Watterson KG, Kearney JN, Fisher J, Ingham E. Tissue engineering of cardiac valves prostheses I: development and histological characterization of an acellular porcine scaffold. J Heart Valve Dis 2002;11(4):457-62. Go to PubMed...
  19. Conklin BS, Richter ER, Kreutziger KL, Zhong DS, Chen C. Development and evaluation of a novel decellularized vascular xenograft. Med Eng Phys 2002;24(3):173-83. Go to original source... Go to PubMed...
  20. Chen RN, Ho HO, Tsai YT, Sheu MT. Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 2004;25(13):2679-86. Go to original source... Go to PubMed...
  21. Wolf MT, Daly KA, Reing JE, Badylak SF. Biologic scaffold composed of skeletal muscle extracellular matrix. Biomaterials 2012;33(10):2916-2925. Go to original source... Go to PubMed...
  22. Crapo P, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials 2011;32(12):3233-43. Go to original source... Go to PubMed...
  23. Kosaraju RS. The future of tissue engineering: A novel perfusion-based protocol for decellularizing adipose tissue on a bioreactor. Proceedings of the California State Science Fair California State Science Fair; 2011 2-3 May; California, USA.
  24. Gilbert TW, Freund J, Badylak SF: Quantification of DNA in biologic scaffold materials. J Surg Res 2009;152(1):135-9. Go to original source... Go to PubMed...
  25. Gilbert TW, Selaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006;(27)19:3675-83. Go to original source... Go to PubMed...
  26. Baptista MP, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology; 2011;53(2):604-17. Go to original source... Go to PubMed...
  27. Ott CH, Mathiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor D. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nature Medicine 2007;14(2):213-21. Go to original source...
  28. Wang L, Johnson JA, Chang DW, Zhang Q. Decellularized musculofascial extracellular matrix for tissue engineering. Biomaterials. 2013;34(11):2641-54. Go to original source... Go to PubMed...
  29. Grauss RW, Hazekamp MG, Oppenhuizen F, Munsteren CJ, Gitenberger-de Groot AC, DeRuiter MC. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg 2005;27(4):566-71. Go to original source... Go to PubMed...
  30. Nakayama KH, Batchelder CA, Lee CI, Tarantal AF. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 2010;16(7):2207-16. Go to original source... Go to PubMed...
  31. Lumpkins SB, Pierre N, McFetrigde PS. A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomater 2008;4(4):808-16. Go to original source... Go to PubMed...
  32. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 2010;16(7):814-20. Go to original source... Go to PubMed...
  33. Courtman DW, Pereira CA, Kashef V, McComb D, Lee JM, Wilson GJ. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. J Biomed Mater Res 1994;28(6):655-66. Go to original source... Go to PubMed...
  34. Uzarski JS, Van de Walle AB, McFetridge PS. Preimplantation processing of ex vivo-derived vascular biomaterials: effects of peripheral cell adhesion. J Biomed Mater Res A 2013;101(1):123-31. Go to original source... Go to PubMed...
  35. Cebotari S, Tudorache I, Jaekel T, Hilfiker A, Dorfman S, Ternes W, Haverich A, Lichtenberg A. Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif Organ 2010;34(3):206-10. Go to original source...
  36. Hudson TW, Zawko S, Deister C, Lundy S, Hu CY, Schmidt CE. Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng 2004;10(11-12):1645-51. Go to original source...
  37. Hudson TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng 2004;10(9-10):1346-58. Go to original source... Go to PubMed...
  38. Dahl SL, Koh J, Prabhakar V, Niklason LE. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant 2003;12(6):659-66. Go to original source... Go to PubMed...
  39. Wallis JM, Borg ZD, Daly AB, Deng B, Ballif AF, Allen GB, Jaworski DM, Weiss DJ. Comparative assessment of detergent-based protocols for mouse lung de-cellularization and re-cellularization. Tissue Eng Part C Methods 2012;8(6):420-32. Go to original source...
  40. Levy RJ, Vyavahare N, Ogle M, Ashworth P, Bianco R, Schoen FJ. Inhibition of cusp and aortic wall calcification in ethanol- and aluminium-treated bioprosthetic heart valves in sheep: background, mechanism, and synergism. J Heart Valve Dis 2003;12(2):209-16. Go to PubMed...
  41. Clark JN, Ogle MF, Ashworth P, Bianco RW, Levy RJ. Prevention of calcification of bioprosthetic heart valve cusp and aortic wall with ethanol and aluminium chloride. Ann Thorac Surg 2005;79(3):897-904. Go to original source... Go to PubMed...
  42. Schenke-Layland K, Vasilevski O, Opitz F, König K, Rieman I, Halbhuber KJ, Wahlers T, Stock UA. Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol 2003;143(3):201-8. Go to original source... Go to PubMed...
  43. Yang M, Chen CZ, Wang XN, Zhu YB, Gu YJ. Favourable effects of the detergent and enzyme extraction method for preparing decellularized bovine pericardium scaffold for tissue engineered heart valves. J Bio Mater Res B Appl Biomater 2009;91(1):354-61. Go to original source...
  44. Yang B, Zhang Y, Zhou L, Sun Z, Zheng J, Chen Y, Dai Y. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C Methods 2010;16(5):1201-11. Go to original source... Go to PubMed...
  45. Freytes DO, Stoner RM, Badylak SF. Uniaxial and biaxial properties of terminally sterilized porcine urinary bladder matrix scaffolds. J Biomed Mater Res B Appl Biomater 2008;84(2):408-14. Go to original source... Go to PubMed...
  46. Gillies AR, Smith LR, Lieber RL, Varghese S. Method for decellularizing skeletal muscle without detergents or proteolytic enzymes. Tissue Eng Part C Methods 2011;17(4):383-9. Go to original source... Go to PubMed...
  47. Karabekmez FE, Duymaz A, Moran SL. Early clinical outcomes with use of decellularized nerve allograft for repair sensory defects within the hand. Hand 2009;4(3):245-9. Go to original source... Go to PubMed...
  48. Baiguera S, Jungebluth P, Burns A, Mavilia C, Haag J, De Coppi P, Macchiarini P. Tissue engineered human tracheas for in vivo implantation. Biomaterials 2010;31(34):8931-8. Go to original source... Go to PubMed...
  49. Reing JE, Brown DN, Daly KA, Freund JM, Gilbert TW, Hsiong SX, Huber A, Kullas KE, Tottey S, Wolf MT, Badylak SF. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials 2010;31(33):8626-33. Go to original source... Go to PubMed...
  50. Weymann A, Loganathan S, Takahashi H, Schies S, Claus B, Hirsberg K, Soós P, Korkmaz S, Schmack B, Karck M, Szabó G. Development of and evaluation of a perfusion decellularization porcine heart model. Circ Journal 2011;75(4):852-60. Go to original source...
  51. Consolo F, Brizzola S, Tremolada G, Grieco V, Riva F, Acocella F, Fiore GB, Soncini M. A dynamic distention protocol for whole-organ bladder decellularization: Histological and biomechanical characterization of the acellular matrix. J Tissue Eng Regen Med. 2013;4:1767. Go to original source...
  52. Woods T, Gratzer PF. Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials 2005;26(35):7339-49. Go to original source... Go to PubMed...
  53. Cartmell JS, Dun MG. Effect of chemical treatments on tendon cellularity and mechanical properties. Tissue Eng 2000;49(1):134-40. Go to original source...