Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014, 158(4):628-634 | DOI: 10.5507/bp.2013.017

Optical coherence tomography in progressive cone dystrophy

Jiri Zahlava, Jan Lestak, Ivan Karel
Eye department of the Clinic JL, V Hurkach 1296, 158 00 Prague 5, Czech Republic

Aim: The aim of the study was to analyse different clinical pictures in patients with progressive cone dystrophy (PCD), to compare these with the results of optical coherence tomography (OCT) and to evaluate the benefits of this method for diagnosis.

Methods: The group consisted of 16 patients (32 eyes) with PCD. All patients were examined for visual acuity, colour sense and visual field. We performed biomicroscopic examination, photo-documentation, fluorescein angiography, electrophysiological tests and OCT.

Results: Using biomicroscopy and fluorescein angiography, we found changes in the retinal pigment epithelium ranging from barely detectable changes up to the typical bull's eye appearance. In all the eyes, OCT established statistically significant reduction in the thickness and structural changes in the neuroretina of the macula. Atrophy was evident especially in the outer nuclear layer, in the photoreceptor inner segment/outer segment junction and in the retinal pigment epithelium. Visual acuity was mainly dependent on the degree to which the continuity of the photoreceptor inner segment/outer segment junction layer was maintained. Eyes with better preserved neuroretinal structure in the fovea centralis had generally less reduced thickness of the retina and a better visual acuity.

Conclusion: OCT specifies the quantitative and qualitative changes in the macula and may contribute significantly to the diagnosis of the progressive cone dystrophy, particularly in the early stages of the disease which is difficult to diagnose.

Keywords: progressive cone dystrophy, optical coherence tomography, photoreceptor inner segment/outer segment junction, outer nuclear layer

Received: August 14, 2012; Accepted: February 27, 2013; Prepublished online: March 21, 2013; Published: December 9, 2014  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zahlava, J., Lestak, J., & Karel, I. (2014). Optical coherence tomography in progressive cone dystrophy. Biomedical papers158(4), 628-634. doi: 10.5507/bp.2013.017
Download citation

References

  1. Sadowski B, Zrenner E. Cone and rod function in cone degenerations. Vision Res 1997;37:2303-14. Go to original source... Go to PubMed...
  2. Simunovic MP, Moore AT. The cone dystrophies. Eye 1998;12:553-65. Go to original source... Go to PubMed...
  3. Krill AE, Deutman AF, Fishman M. The cone degenerations. Doc Ophthalmol 1973;35:1-80. Go to original source... Go to PubMed...
  4. Michaelides M, Aligianis IA, Ainsworth JR, Good P, Mollon JD, Maher ER, Moore AT, Hunt DM. Progressive cone dystrophy associated with mutation in CNGB3. Invest Ophthalmol Vis Sci 2004;45:1975-82. Go to original source... Go to PubMed...
  5. Michaelides M, Wilkie SE, Jenkins S, Holder GE, Hunt DM, Moore AT, Webster AR. Mutation in the gene GUCA1A, encoding guanylate cyclase-activating protein 1, causes cone, cone-rod, and macular dystrophy. Ophthalmology 2005;112:1442-7. Go to original source... Go to PubMed...
  6. Michaelides M, Hardcastle AJ, Hunt DM, Moore AT. Progressive cone a cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv Ophthalmol 2006;51:232-58. Go to original source... Go to PubMed...
  7. Carr RE. Cone dystrophies. In: Guyer DR, Yannuzzi LA, Chang S, Shields JA, Green WR. Retina-Vitreous-Macula. Philadelphia, London, Toronto, Montreal, Sydney, Tokyo: W.B. Saunders Comp; 1999.p.942-8.
  8. Heckenlively JR, Weleber RG. X-linked recessive cone dystrophy with tapetal-like sheen. A newly recognized entity with Mizuo-Nakamura phenomenon. Arch Ophthalmol 1986;104:1322-8. Go to original source... Go to PubMed...
  9. Downes SM, Holder GE, Fitzke FW, Payne AM, Warren MJ, Bhattacharya SS, Bird AC. Autosomal dominant cone and cone-rod dystrophy with mutations in the guanylate cyclase activator 1A gene-encoding guanylate cyclase activating protein-1. Arch Ophthalmol 2001;119:96-105. Go to original source... Go to PubMed...
  10. Meire FM, Bergen AA, De Rouck A, Leys M, Delleman JW. X linked progressive cone dystrophy. Localisation of the gene locus to Xp21-p11.1 by linkage analysis. Br J Ophthalmol 1994;78:103-8. Go to original source... Go to PubMed...
  11. Ripps H, Noble KG, Greenstein VC, Siegel IM, Carr RE. Progressive cone dystrophy. Ophthalmology 1987;94:1401-9. Go to original source... Go to PubMed...
  12. Jacobson DM, Thompson HS, Bartley JA. X-linked progressive cone dystrophy. Clinical characteristics of affected males and female carriers. Ophthalmology 1989;96:885-95. Go to original source... Go to PubMed...
  13. Scheiner EM. Progressive cone-rod dystrophy. Clin Eye Vis Care 1999;10:173-9. Go to original source...
  14. Francois J, De Rouck A, De Laey JJ. Progressive cone dystrophies. Ophthalmologica 1976;173:81-101. Go to original source... Go to PubMed...
  15. Lim JI, Tan O, Fawzi AA, Hopkins JJ, Gil-Flamer JH, Huang D. A pilot study of Fourier-domain optical coherence tomography of retinal dystrophy patients. Am J Ophthalmol 2008;146:417-26. Go to original source... Go to PubMed...
  16. Wolfing JI, Chung M, Carroll J, Roorda A, Williams DR. High-resolution retinal imaging of cone-rod dystrophy. Ophthalmology 2006;113:1014-9. Go to original source... Go to PubMed...
  17. Emfietzoglou I, Grigoropoulos V, Nikolaidis P, Theodossiadis G, Rouvas, Theodossiadis P. Optical coherence tomography findings in a case of cone-rod dystrophy. Ophthalmic Surg Lasers Imaging 2010;41:e1-3. doi:10.3928/15428877-20101124-10 Go to original source...
  18. Chan A, Duker JS, Ko TH, Fujimoto JG, Schuman JS. Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography. Arch Ophthalmol 2006;124:193-8. Go to original source... Go to PubMed...
  19. Wirtitsch MG, Ergun E, Hermann B, Unterhuber A, Stur M, Scholda C, Sattmann H, Ko TH, Fujimoto JG, Drexler W. Ultrahigh resolution optical coherence tomography in macular dystrophy. Am J Ophthalmol 2005;140:976-83. Go to original source... Go to PubMed...
  20. Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2006;113:2054-65. Go to original source... Go to PubMed...