Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011, 155(1):11-18 | DOI: 10.5507/bp.2011.016

WNT SIGNALING IN PROSTATE DEVELOPMENT AND CARCINOGENESIS

Gvantsa Kharaishvilia, Dana Simkovaa, Eka Makharoblidzeb, Katerina Trtkovaa, Zdenek Kolara, Jan Bouchala
a Laboratory of Molecular Pathology of Institute of Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
b Centre for Clinical and Pathological Diagnostics, Alexandre Natishvili Institute of Morphology, Tbilisi, Georgia

Background: The Wnt signaling pathway is crucial for cell fate decisions, stem cell renewal, regulation of cell proliferation and differentiation. Deregulated Wnt signaling is also implicated in a number of hereditary and degenerative diseases and cancer.

Methods and results: This review highlights the role of the Wnt pathway in the regulation of stem/progenitor cell renewal and prostate gland development and how this signaling is altered in prostate cancer. Recent evidence suggests that Wnt signaling regulates androgen activity in prostate cancer cells, enhances androgen receptor expression and promotes the growth of prostate cancer even after androgen ablation therapy. There is also strong evidence that Wnt signaling is enhanced in androgen-ablation resistant tumors and bone metastases.

Conclusions: Further study of the modulators of this pathway will be of therapeutic relevance as inhibition of Wnt signaling may have the potential to reduce the self-renewal and aggressive behaviour of prostate cancer while Wnt signaling activation might enhance stem cell activity when tissue regeneration is required.

Keywords: Prostate cancer, Development, Stem cells, Wnt signaling, Androgen receptor

Received: December 17, 2010; Accepted: February 4, 2011; Published: March 1, 2011  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kharaishvili, G., Simkova, D., Makharoblidze, E., Trtkova, K., Kolar, Z., & Bouchal, J. (2011). WNT SIGNALING IN PROSTATE DEVELOPMENT AND CARCINOGENESIS. Biomedical papers155(1), 11-18. doi: 10.5507/bp.2011.016
Download citation

References

  1. Moon RT, Miller JR. The APC tumor suppressor protein in development and cancer. Trends Genet 1997;13:2568. Go to original source... Go to PubMed...
  2. Spink KE, Polakis P, Weis WI. Structural basis of the Axinadenomatous polyposis coli interaction. EMBO J 2000;19:22709. Go to original source... Go to PubMed...
  3. Mani A, Radhakrishnan J, Wang H, Mani A, Mani MA, Nelson- Williams C, Carew KS, Mane S, Najmabadi H, Wu D, Lifton RP. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 2007;315:127882. Go to original source... Go to PubMed...
  4. De Ferrari GV, Papassotiropoulos A, Biechele T, Wavrant De- Vrieze F, Avila ME, Major MB, Myers A, Saez K, Henriquez JP, Zhao A, Wollmer MA, Nitsch RM, Hock C, Morris CM, Hardy J, Moon RT. Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer's disease. Proc Natl Acad Sci U S A 2007;104:94349. Go to original source... Go to PubMed...
  5. Kanazawa A, Tsukada S, Sekine A, Tsunoda T, Takahashi A, Kashiwagi A, Tanaka Y, Babazono T, Matsuda M, Kaku K, Iwamoto Y, Kawamori R, Kikkawa R, Nakamura Y, Maeda S. Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes. Am J Hum Genet 2004;75:83243. Go to original source... Go to PubMed...
  6. Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, Pirinen S, Nieminen P. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 2004;74:104350. Go to original source... Go to PubMed...
  7. Rivera MN, Kim WJ, Wells J, Driscoll DR, Brannigan BW, Han M, Kim JC, Feinberg AP, Gerald WL, Vargas SO, Chin L, Iafrate AJ, Bell DW, Haber DA. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science 2007;315:6425. Go to original source... Go to PubMed...
  8. Yardy GW, Brewster SF. Wnt signalling and prostate cancer. Prostate Cancer Prostatic Dis 2005;8:11926. Go to original source... Go to PubMed...
  9. Verras M, Sun Z. Roles and regulation of Wnt signaling and betacatenin in prostate cancer. Cancer Lett 2006;237:2232. Go to original source... Go to PubMed...
  10. Terry S, Yang X, Chen MW, Vacherot F, Buttyan R. Multifaceted interaction between the androgen and Wnt signaling pathways and the implication for prostate cancer. J Cell Biochem 2006;99:402 10. Go to original source... Go to PubMed...
  11. Emami KH, Corey E. When prostate cancer meets bone: control by wnts. Cancer Lett 2007;253:1709. Go to original source... Go to PubMed...
  12. Robinson DR, Zylstra CR, Williams BO. Wnt signaling and prostate cancer. Curr Drug Targets 2008;9:57180. Go to original source... Go to PubMed...
  13. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982;31:99109. Go to original source... Go to PubMed...
  14. Jones SE, Jomary C. Secreted Frizzled-related proteins: searching for relationships and patterns. Bioessays 2002;24:81120. Go to original source... Go to PubMed...
  15. Tanner MJ, Levina E, Shtutman M, Chen M, Ohouo P, Buttyan R. Unique Effects of Wnt Signaling on Prostate Cancer Cells: Modulation of the Androgen Signaling Pathway by Interactions of the Androgen Receptor Gene and Protein with Key Components of the Canonical Wnt Signaling Pathway; in Mohler J and Tindall D (eds). Androgen Action in Prostate Cancer. Springer New York:2009. Go to original source...
  16. Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 2007;316:161922. Go to original source... Go to PubMed...
  17. Schwarz-Romond T, Fiedler M, Shibata N, Butler PJ, Kikuchi A, Higuchi Y, Bienz M. The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat Struct Mol Biol 2007;14:48492. Go to original source... Go to PubMed...
  18. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. Identification of c-MYC as a target of the APC pathway. Science 1998;281:150912. Go to original source... Go to PubMed...
  19. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev A. The cyclin D1 gene is a target of the betacatenin/ LEF-1 pathway. Proc Natl Acad Sci U S A 1999; 96:5522 7. Go to original source... Go to PubMed...
  20. Carlson ML, Wilson ET, Prescott SM. Regulation of COX-2 transcription in a colon cancer cell line by Pontin52/TIP49a. Mol Cancer 2003;2 :42. Go to original source... Go to PubMed...
  21. Rahmani M, Read JT, Carthy JM, McDonald PC, Wong BW, Esfandiarei M, Si X, Luo Z, Luo H, Rennie PS, McManus BM. Regulation of the versican promoter by the beta-catenin-T-cell factor complex in vascular smooth muscle cells. J Biol Chem 2005;280:1301928. Go to original source...
  22. Haertel-Wiesmann M, Liang Y, Fantl WJ, Williams LT. Regulation of cyclooxygenase-2 and periostin by Wnt-3 in mouse mammary epithelial cells. J Biol Chem 2000;275:3204651. Go to original source... Go to PubMed...
  23. ten Berge D, Koole W, Fuerer C, Fish M, Eroglu E, Nusse R. Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 2008;3:50818. Go to original source... Go to PubMed...
  24. Meneghini MD, Ishitani T, Carter JC, Hisamoto N, Ninomiya-Tsuji J, Thorpe CJ, Hamill DR, Matsumoto K, Bowerman B. MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature 1999;399:7937. Go to original source... Go to PubMed...
  25. Ozawa M, Baribault H, Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J 1989;8:17117. Go to original source...
  26. Polakis P. Wnt signaling and cancer. Genes Dev 2000;14:183751. Go to original source...
  27. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997;275:1787 90. Go to original source... Go to PubMed...
  28. Kuhl M, Geis K, Sheldahl LC, Pukrop T, Moon RT, Wedlich D. Antagonistic regulation of convergent extension movements in Xenopus by Wnt/beta-catenin and Wnt/Ca2+ signaling. Mech Dev 2001;106:6176. Go to original source... Go to PubMed...
  29. McEwen DG, Peifer M. Wnt signaling: Moving in a new direction. Curr Biol 2000;10:R5624. Go to original source... Go to PubMed...
  30. Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 2003;5:36777. Go to original source... Go to PubMed...
  31. Turashvili G, Bouchal J, Burkadze G, Kolar Z. Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology 2006;73:21323. Go to original source... Go to PubMed...
  32. Slusarski DC, Corces VG, Moon RT. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 1997;390:4103. Go to original source... Go to PubMed...
  33. Sheldahl LC, Park M, Malbon CC, Moon RT. Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr Biol 1999;9:6958. Go to original source... Go to PubMed...
  34. Ahumada A, Slusarski DC, Liu X, Moon RT, Malbon CC, Wang HY. Signaling of rat Frizzled-2 through phosphodiesterase and cyclic GMP. Science 2002;298:200610. Go to original source... Go to PubMed...
  35. Pandur P, Lasche M, Eisenberg LM, Kuhl M. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 2002;418:63641. Go to original source... Go to PubMed...
  36. Heisenberg CP, Tada M, Rauch GJ, Saude L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 2000;405:7681. Go to original source... Go to PubMed...
  37. Keller R. Shaping the vertebrate body plan by polarized embryonic cell movements. Science 2002;298:19504. Go to original source... Go to PubMed...
  38. Montcouquiol M, Crenshaw EB 3rd, Kelley MW. Noncanonical Wnt signaling and neural polarity. Annu Rev Neurosci 2006;29:36386. Go to original source... Go to PubMed...
  39. Guo N, Hawkins C, Nathans J. Frizzled6 controls hair patterning in mice. Proc Natl Acad Sci U S A 2004;101:927781. Go to original source...
  40. van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development 2009;136:320514. Go to original source... Go to PubMed...
  41. Yamamoto S, Nishimura O, Misaki K, Nishita M, Minami Y, Yonemura S, Tarui H, Sasaki H. Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev Cell 2008;15:2336. Go to original source... Go to PubMed...
  42. Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, Yang Y. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3- independent beta-catenin degradation. J Cell Biol 2003;162:899 908. Go to original source... Go to PubMed...
  43. Cunha GR, Ricke W, Thomson A, Marker PC, Risbridger G, Hayward SW, Wang YZ, Donjacour AA, Kurita T. Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. J Steroid Biochem Mol Biol 2004;92:22136. Go to original source... Go to PubMed...
  44. Wernert N, Seitz G, Achtstatter T. Immunohistochemical investigation of different cytokeratins and vimentin in the prostate from the fetal period up to adulthood and in prostate carcinoma. Pathol Res Pract 1987;182:61726.
  45. Allgeier SH, Lin TM, Vezina CM, Moore RW, Fritz WA, Chiu SY, Zhang C, Peterson RE. WNT5A selectively inhibits mouse ventral prostate development. Dev Biol 2008;324:107. Go to original source... Go to PubMed...
  46. Huang L, Pu Y, Hu WY, Birch L, Luccio-Camelo D, Yamaguchi T, Prins GS. The role of Wnt5a in prostate gland development. Dev Biol. 2009;15;(328) 2:18899. Go to original source... Go to PubMed...
  47. Wang BE, Wang XD, Ernst JA, Polakis P, Gao WQ. Regulation of epithelial branching morphogenesis and cancer cell growth of the prostate by Wnt signaling. PLoS One 2008;3:e2186. Go to original source... Go to PubMed...
  48. Prins GS, Putz O. Molecular signaling pathways that regulate prostate gland development. Differentiation 2008;76:64159. Go to original source... Go to PubMed...
  49. Joesting MS, Cheever TR, Volzing KG, Yamaguchi TP, Wolf V, Naf D, Rubin JS, Marker PC. Secreted frizzled related protein 1 is a paracrine modulator of epithelial branching morphogenesis, proliferation, and secretory gene expression in the prostate. Dev Biol 2008;317:16173. Go to original source... Go to PubMed...
  50. Zhang TJ, Hoffman BG, Ruiz de Algara T, Helgason CD. SAGE reveals expression of Wnt signalling pathway members during mouse prostate development. Gene Expr Patterns 2006;6:31024. Go to original source... Go to PubMed...
  51. Schaeffer EM, Marchionni L, Huang Z, Simons B, Blackman A, Yu W, Parmigiani G, Berman DM. Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer. Oncogene 2008;27:718091. Go to original source... Go to PubMed...
  52. Li X, Wang Y, Sharif-Afshar AR, Uwamariya C, Yi A, Ishii K, Hayward SW, Matusik RJ, Bhowmick NA. Urothelial transdifferentiation to prostate epithelia is mediated by paracrine TGF-beta signaling. Differentiation 2009;77:95102. Go to original source... Go to PubMed...
  53. English HF, Santen RJ, Isaacs JT. Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 1987;11:22942. Go to original source... Go to PubMed...
  54. Mills AA, Qi Y, Bradley A. Conditional inactivation of p63 by Cre-mediated excision. Genesis 2002;32:13841. Go to original source... Go to PubMed...
  55. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 2004;117:353945. Go to original source... Go to PubMed...
  56. Lawson DA, Witte ON. Stem cells in prostate cancer initiation and progression. J Clin Invest 2007;117:204450. Go to original source... Go to PubMed...
  57. Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J, Witte ON. Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci U S A 2010;107:26105. Go to original source... Go to PubMed...
  58. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C, Yoon K, Cook JM, Willert K, Gaiano N, Reya T. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005;6:31422. Go to original source... Go to PubMed...
  59. McDonald SA, Preston SL, Lovell MJ, Wright NA, Jankowski JA. Mechanisms of disease: from stem cells to colorectal cancer. Nat Clin Pract Gastroenterol Hepatol 2006;3:26774. Go to original source... Go to PubMed...
  60. Blum R, Gupta R, Burger PE, Ontiveros CS, Salm SN, Xiong X, Kamb A, Wesche H, Marshall L, Cutler G, Wang X, Zavadil J, Moscatelli D, Wilson EL. Molecular signatures of prostate stem cells reveal novel signaling pathways and provide insights into prostate cancer. PLoS One 2009;4:e5722. Go to original source... Go to PubMed...
  61. Blum R, Gupta R, Burger PE, Ontiveros CS, Salm SN, Xiong X, Kamb A, Wesche H, Marshall L, Cutler G, Wang X, Zavadil J, Moscatelli D, Wilson EL. Molecular signatures of the primitive prostate stem cell niche reveal novel mesenchymal-epithelial signaling pathways. PLoS One. 2010;5:e13024. Go to original source... Go to PubMed...
  62. Lang SH, Frame FM, Collins AT. Prostate cancer stem cells. J Pathol 2009;217:299306. Go to original source... Go to PubMed...
  63. Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV, Hu YP, Price SM, Abate-Shen C, Shen MM. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 2009;461:495500. Go to original source... Go to PubMed...
  64. Huang J, Witte ON. A seminal finding for prostate cancer? N Engl J Med 2010;362:1756. Go to original source... Go to PubMed...
  65. Bisson I, Prowse DM. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res 2009;19:68397. Go to original source... Go to PubMed...
  66. Voeller HJ, Truica CI, Gelmann EP. Beta-catenin mutations in human prostate cancer. Cancer Res 1998;58:25203.
  67. Gerstein AV, Almeida TA, Zhao G, Chess E, Shih IeM, Buhler K, Pienta K, Rubin MA, Vessella R, Papadopoulos N. APC/CTNNB1 (beta-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer 2002;34:916. Go to original source... Go to PubMed...
  68. Bierie B, Nozawa M, Renou JP, Shillingford JM, Morgan F, Oka T, Taketo MM, Cardiff RD, Miyoshi K, Wagner KU, Robinson GW, Hennighausen L. Activation of beta-catenin in prostate epithelium induces hyperplasias and squamous transdifferentiation. Oncogene 2003;22:387587. Go to original source... Go to PubMed...
  69. Yardy GW, Bicknell DC, Wilding JL, Bartlett S, Liu Y, Winney B, Turner GD, Brewster SF, Bodmer WF. Mutations in the AXIN1 gene in advanced prostate cancer. Eur Urol 2009;56:48694. Go to original source... Go to PubMed...
  70. Salahshor S, Woodgett JR. The links between axin and carcinogenesis. J Clin Pathol 2005;58:22536. Go to original source... Go to PubMed...
  71. Richmond PJ, Karayiannakis AJ, Nagafuchi A, Kaisary AV, Pignatelli M. Aberrant E-cadherin and alpha-catenin expression in prostate cancer: correlation with patient survival. Cancer Res 1997;57:318993.
  72. Yang F, Li X, Sharma M, Sasaki CY, Longo DL, Lim B, Sun Z. Linking beta-catenin to androgen-signaling pathway. J Biol Chem 2002;277:1133644. Go to original source... Go to PubMed...
  73. Rubin MA, Mucci NR, Figurski J, Fecko A, Pienta KJ, Day ML. E-cadherin expression in prostate cancer: a broad survey using highdensity tissue microarray technology. Hum Pathol 2001;32:6907. Go to original source... Go to PubMed...
  74. Salas TR, Kim J, Vakar-Lopez F, Sabichi AL, Troncoso P, Jenster G, Kikuchi A, Chen SY, Shemshedini L, Suraokar M, Logothetis CJ, DiGiovanni J, Lippman SM, Menter DG. Glycogen synthase kinase-3 beta is involved in the phosphorylation and suppression of androgen receptor activity. J Biol Chem 2004;279:19191200. Go to original source... Go to PubMed...
  75. Hall CL, Bafico A, Dai J, Aaronson SA, Keller ET. Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res 2005;65:755460. Go to original source... Go to PubMed...
  76. Yang X, Chen MW, Terry S, Vacherot F, Bemis DL, Capodice J, Kitajewski J, de la Taille A, Benson MC, Guo Y, Buttyan R. Complex regulation of human androgen receptor expression by Wnt signaling in prostate cancer cells. Oncogene 2006;25:343644. Go to original source... Go to PubMed...
  77. Kawano Y, Diez S, Uysal-Onganer P, Darrington RS, Waxman J, Kypta RM. Secreted Frizzled-related protein-1 is a negative regulator of androgen receptor activity in prostate cancer. Br J Cancer 2009;100:116574. Go to original source... Go to PubMed...
  78. Schweizer L, Rizzo CA, Spires TE, Platero JS, Wu Q, Lin TA, Gottardis MM, Attar RM. The androgen receptor can signal through Wnt/beta-Catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens. BMC Cell Biol 2008;9:4. Go to original source... Go to PubMed...
  79. Chen G, Shukeir N, Potti A, Sircar K, Aprikian A, Goltzman D, Rabbani SA. Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 2004;101:1345 56. Go to original source... Go to PubMed...
  80. Katoh M. Frequent up-regulation of WNT2 in primary gastric cancer and colorectal cancer. Int J Oncol 2001;19:10037. Go to original source...
  81. Wissmann C, Wild PJ, Kaiser S, Roepcke S, Stoehr R, Woenckhaus M, Kristiansen G, Hsieh JC, Hofstaedter F, Hartmann A, Knuechel R, Rosenthal A, Pilarsky C. WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol 2003;201:20412. Go to original source... Go to PubMed...
  82. Wang Q, Symes AJ, Kane CA, Freeman A, Nariculam J, Munson P, Thrasivoulou C,Masters JR, Ahmed A. A novel role for Wnt/ Ca2+ signaling in actin cytoskeleton remodeling and cell motility in prostate cancer. PLoS One. 2010;5(5):e10456. Go to original source... Go to PubMed...
  83. Yamamoto H, Oue N, Sato A, Hasegawa Y, Yamamoto H, Matsubara A, Yasui W,Kikuchi A. Wnt5a signaling is involved in the aggressiveness of prostate cancer and expression of metalloproteinase. Oncogene. 2010;29(14):203646. Go to original source... Go to PubMed...
  84. Zhu H, Mazor M, Kawano Y, Walker MM, Leung HY, Armstrong K, Waxman J, Kypta RM. Analysis of Wnt gene expression in prostate cancer: mutual inhibition by WNT11 and the androgen receptor. Cancer Res 2004;64:791826. Go to original source... Go to PubMed...
  85. Uysal-Onganer P, Kawano Y, Caro M, Walker MM, Diez S, Darrington RS, Waxman J, Kypta RM. Wnt-11 promotes neuroendocrine- like differentiation, survival and migration of prostate cancer cells. Mol Cancer 2010;9:55. Go to original source... Go to PubMed...
  86. Sato H, Suzuki H, Toyota M, Nojima M, Maruyama R, Sasaki S, Takagi H, Sogabe Y, Sasaki Y, Idogawa M, Sonoda T, Mori M, Imai K, Tokino T, Shinomura Y. Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis 2007;28:245966. Go to original source... Go to PubMed...
  87. Horvath LG, Lelliott JE, Kench JG, Lee CS, Williams ED, Saunders DN, Grygiel JJ, Sutherland RL, Henshall SM. Secreted frizzled-related protein 4 inhibits proliferation and metastatic potential in prostate cancer. Prostate 2007;67:108190. Go to original source... Go to PubMed...
  88. Lodygin D, Epanchintsev A, Menssen A, Diebold J, Hermeking H. Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res 2005;65:421827. Go to original source... Go to PubMed...
  89. Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 2006;4:e115. Go to original source... Go to PubMed...
  90. Joesting MS, Perrin S, Elenbaas B, Fawell SE, Rubin JS, Franco OE, Hayward SW, Cunha GR, Marker PC. Identification of SFRP1 as a candidate mediator of stromal-to-epithelial signaling in prostate cancer. Cancer Res 2005;65:1042330. Go to original source... Go to PubMed...
  91. Koutsilieris M. Skeletal metastases in advanced prostate cancer: cell biology and therapy. Crit Rev Oncol Hematol 1995;18:5164. Go to original source... Go to PubMed...
  92. Keller ET, Zhang J, Cooper CR, Smith PC, McCauley LK, Pienta KJ, Taichman RS. Prostate carcinoma skeletal metastases: crosstalk between tumor and bone. Cancer Metastasis Rev 2001;20:333 49. Go to original source... Go to PubMed...
  93. Boyce BF, Yoneda T, Guise TA. Factors regulating the growth of metastatic cancer in bone. Endocr Relat Cancer 1999;6:33347. Go to original source... Go to PubMed...
  94. Liu XH, Kirschenbaum A, Weinstein BM, Zaidi M, Yao S, Levine AC. Prostaglandin E2 modulates components of the Wnt signaling system in bone and prostate cancer cells. Biochem Biophys Res Commun 2010; 394:71520. Go to original source... Go to PubMed...
  95. Hall CL, Tsan R, Mugnai G, Mazar A, Radinsky R, Pettaway CA. Enhanced invasion of hormone refractory prostate cancer cells through hepatocyte growth factor (HGF) induction of urokinasetype plasminogen activator (u-PA). Prostate 2004;59:16776. Go to original source... Go to PubMed...
  96. Dai J, Hall CL, Escara-Wilke J, Mizokami A, Keller JM, Keller ET. Prostate cancer induces bone metastasis through Wnt-induced bone morphogenetic protein-dependent and independent mechanisms. Cancer Res 2008;68:578594. Go to original source... Go to PubMed...