Acta Univ. Palacki. Olomuc., Fac. Med. Volume 141, 1998

SIGNALLING TOWARDS CELL WALL SYNTHESIS IN BUDDING YEAST

Vladislav Raclavský
Centre of Molecular Biology and Medicine, Faculty of Medicine, Palacký University, CZ-775 15 Olomouc, Czech Republic

The budding yeast Saccharomyces cerevisiae has long proved to be a very useful model in cell biology. Its cell morphologyis established and maintained at least in part by the cell wall, a rigid but dynamic structure that affords mechanical protection.Although fungal cell walls represent an unique phenomenon, recent progress in research has shown striking parallelsbetween yeast and mammalian cells in the area of cell morphogenesis and proliferation. Further studies promise to shedcommon light on the processes of cell morphogenesis including the intersections with proliferation control. This reviewfocuses on the recent progress in this promising area in the yeast Saccharomyces cerevisiae.The process of cell wall synthesis in Saccharomyces cerevisiae was reviewed by several authors recently1,2,3. Briefly, thecell wall represents a complex structure of cross-linked chitin, β-(1,6)-d-glucan, β-(1,3)-D-glucan and mannoproteins.Chitin and β-(1,3)-D-glucan are synthesized by enzymatic complexes at the cell membrane and extruded into the periplasmicspace, mannoproteins are synthesized along the yeast secretory pathway, and the site of β-(1,6)-D-glucan synthesis is stillunknown. The principal motif which interconnects individual cell wall constituents was recently identified by Kollár4 etal. The mechanisms of cross-linking of the polymers in the wall remain unknown, however. Recently, nevertheless,substantial progress has been achieved in understanding the signalling pathways which target the cell wall construction.

Keywords: Saccharomyces cerevisiae, Budding yeast, Cell wall, Signalling, PKC1

Published: July 1, 1998  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Raclavský, V. (1998). SIGNALLING TOWARDS CELL WALL SYNTHESIS IN BUDDING YEAST. Biomedical papers141(1), 
Download citation

References

  1. Cid, V. J., Durán, A., del Rey, F., Snyder, M. P., Nombela, C., Sánchez, M. (1995) Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol. Rev., 59, 345- 386. Go to original source... Go to PubMed...
  2. Cabib, E., Drgoň, T., Drgoňová, J., Ford, R. A., Kollár, R. (1997) The yeast cell wall, a dynamic structure engaged in growth and morphogenesis. Biochem. Soc. Trans., 25, 200-204. Go to original source... Go to PubMed...
  3. Klis, F. M., Caro, L. H., Vossen, J. H., Kapteyn, J. C., Ram, A. F., Montijn, R. C., Van Berkel, M. A., Van den Ende, H. (1997) Identification and characterization of a major building block in the cell wall of Saccharomyces cerevisiae. Biochem. Soc. Trans., 25, 856-860. Go to original source... Go to PubMed...
  4. Kollar, R., Reinhold, B. B., Petrakova, R., Yeh, H. J., Ashwell, G., Drgonova, J., Kapteyn, J. C., Klis, F. M., Cabib, E. (1997) Architecture of the yeast cell wall. -(1,6)-glucan interconnects mannoprotein, -(1,3)-glucan, and chitin. J. Biol. Chem., 272, 17762-17775. Go to original source... Go to PubMed...
  5. Levin, D. E., Fields, F. O., Kunisawa, R., Bishop, J. M., Thorner, J. (1990) A candidate protein kinase C gene, PKC1, is required for the Saccharomyces cerevisiae cell cycle. Cell, 62, 213-224. Go to original source... Go to PubMed...
  6. Paravicini, G., Cooper, M., Friedli, L., Smith, D. J., Carpentier, J.-L., Klig, L. S., Payton, M. A. (1992) The osmotic integrity of the yeast cells requires a functional PKC1 gene product. Mol. Cell. Biol., 12, 4896-4905. Go to original source... Go to PubMed...
  7. Yoshida, S., Ikeda, E., Uno, I., Mitsuzawa, H. (1992) Characterization of a staurosporine- and temperature-sensitive mutant, stt1, of Saccharomyces cerevisiae: STT1 is allelic to PKC1. Mol. Gen. Genet., 231, 337-344. Go to original source... Go to PubMed...
  8. Levin, D. E., Barlet-Heubusch, E. (1992): Mutants in the Saccharomyces cerevisiae PKC1 gene display a cell cycle specific osmotic stability defect. J. Cell Biol., 116, 1221-1229. Go to original source... Go to PubMed...
  9. Lee, K. S., Levin, D. E. (1992) Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog. Mol. Cell. Biol., 12, 172-182. Go to original source... Go to PubMed...
  10. Lee, K. S., Irie, K., Gotoh, Y., Watanabe, Y., Araki, H., Nishida, E., Matsumoto, K., Levin, D. E. (1993) A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol. Cell. Biol., 13, 3067-3075. Go to original source... Go to PubMed...
  11. Mazzoni, C., Zarzov, P., Rambourg, A., Mann, C. (1993) The SLT2(MPK1) MAP kinase homolog is involved in polarized cell growth in Saccharomyces cerevisiae. J. Cell Biol., 123, 1821-1833. Go to original source... Go to PubMed...
  12. Irie, K., Takase, M., Lee, K. S., Levin, D. E., Araki, H., Matsumoto, K., Oshima, Y. (1993) MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C. Mol. Cell. Biol., 13, 3076-3083. Go to original source... Go to PubMed...
  13. Levin, D. E., Bowers, B., Chen, Ch.-Y., Kamada, Y., Watanabe, M. (1994) Dissecting the protein kinase C/MAP kinase signalling pathway of Saccharomyces cerevisiae. Cell. Mol. Biol. Res., 40, 229-239.
  14. Paravicini, G., Friedli, L. (1996) Protein-protein interactions in the yeast PKC1 pathway: Pkc1p interacts with a component of the MAP kinase cascade. Mol. Gen. Genet., 251, 682-691. Go to original source... Go to PubMed...
  15. Kolodrubetz, D., Haggren, W., Burgum, A. (1988) Amino-terminal sequence of a Saccharomyces cerevisiae nuclear protein, NHP6, shows significant identity to bovine HMG1. FEBS Lett., 26, 175- 179. Go to original source... Go to PubMed...
  16. Kolodrubetz, D., Burgum, A. (1990) Duplicated NHP6 genes of Saccharomyces cerevisiae encode proteins homologous to bovine high mobility group protein 1. J. Biol. Chem., 25, 3234-3239. Go to original source...
  17. Costigan, C., Kolodrubetz, D., Snyder, M. (1994) NHP6A and NHP6B, which encode HMG1-like proteins, are candidates for downstream components of the yeast SLT2 mitogen-activated protein kinase pathway. Mol. Cell. Biol., 14, 2391-2403. Go to original source... Go to PubMed...
  18. Paull, T. T., Carey, M., Johnson, R. C. (1996) Yeast HMG proteins NHP6A/B potentiate promoter-specific transcriptional activation in vivo and assembly of preinitiation complexes in vitro. Genes Dev., 10, 2769-2781. Go to original source... Go to PubMed...
  19. Watanabe, Y., Irie, K., Matsumoto, K. (1995) Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol. Cell. Biol., 15, 5740-5749 Go to original source... Go to PubMed...
  20. Dodou, E., Treisman, R. (1997) The Saccharomyces cerevisiae MADS-box transcription factor Rlm1 is a target for the Mpk1 mitogen-activated protein kinase pathway. Mol. Cell. Biol., 17, 1848-1859. Go to original source... Go to PubMed...
  21. Watanabe, Y., Takaesu, G., Hagiwara, M., Irie, K., Matsumoto, K. (1997) Characterization of a serum response factor-like protein in Saccharomyces cerevisiae, Rlm1, which has transcriptional activity regulated by the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol. Cell. Biol., 17, 2615-2623. Go to original source... Go to PubMed...
  22. Zhao, C., Jung, U. S., Garrett-Engele, P., Roe, T., Cyert, M. S., Levin, D. E. (1998) Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol. Cell. Biol., 18, 1013-1022. Go to original source... Go to PubMed...
  23. Shimizu, J., Yoda, K., Yamasaki, M. (1994) The hypo-osmolaritysensitive phenotype of the Saccharomyces cerevisiae hpo2 mutant is due to a mutation in PKC1, which regulates expression of -glucanase. Mol. Gen. Genet., 242, 641-648. Go to original source... Go to PubMed...
  24. Igual, J. C., Johnson, A. L., Johnston, L. H. (1996) Coordinated regulation of gene expression by the cell cycle transcription factor SWI4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J., 15, 5001-5013. Go to original source... Go to PubMed...
  25. Madden, K., Sheu, Y.-J., Baetz, K., Andrews, B., Snyder, M. (1997) SBF cell cycle regulator as a target of the yeast PKC-MAP kinase pathway. Science, 275, 1781-1784. Go to original source... Go to PubMed...
  26. Madaule, P., Axel, R., Myers, A.M. (1987) Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 84, 779-783. Go to original source...
  27. Yamochi, W., Tanaka, K., Nonaka, H., Maeda, A., Musha, T., Takai, Y. (1994) Growth site localization of Rho1 small GTP-binding protein and its involvement in bud formation in Saccharomyces cerevisiae. J. Cell. Biol., 125, 1077-1093. Go to original source... Go to PubMed...
  28. Nonaka, H., Tanaka, K., Hirano, H., Fujiwara, T., Kohno, H., Umikawa, M., Mino, A., Takai, Y. (1995) A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J., 14, 5931-5938. Go to original source... Go to PubMed...
  29. Drgoňová, J., Drgoň, T., Tanaka, K., Kollár, R., Chen, G.-Ch., Ford, R. A., Chan, C. S. M., Takai, Y., Cabib, E. (1996) Rho1p, a yeast protein at the interface between cell polarization and morphogenesis. Science, 272, 277-279. Go to original source... Go to PubMed...
  30. Kamada, Y., Quadota, H., Python, Ch., Anraku, Y., Ohya, Y., Levin, D. E. (1996) Activation of yeast protein kinase C by Rho1 GTPase. J. Biol. Chem., 271, 9193-9196. Go to original source... Go to PubMed...
  31. Quadota, H., Python, Ch. P., Inoue, S. B., Arisawa, M., Anraku, Y., Zheng, Y., Watanabe, T., Levin, D. E., Ohya, Y. (1996) Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3--glucan synthase. Science, 272, 279-281. Go to original source... Go to PubMed...
  32. Mazur, P., Baginski, W. (1996) In vitro activity of 1,3--D-glucan synthase requires the GTP-binding protein Rho1. J. Biol. Chem., 271, 14604-14609. Go to original source... Go to PubMed...
  33. Mazur, P., Morin, N., Baginsky, W., El-Sherbeini, M., Clemas, J. A., Nielsen, J. B., Foor, F. (1995) Differential expression and function of two homologous subunits of yeast 1,3--D-glucan synthase. Mol. Cell. Biol., 15, 5671-5681. Go to original source... Go to PubMed...
  34. Kohno, H., Tanaka, K., Mino, A., Umikawa, M., Imamura, H., Fujiwara, T., Fujita, Y., Hotta, K., Qadota, H., Watanabe, T., Ohya, Y., Takai, Y. (1996) Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J., 15, 6060-6068. Go to original source... Go to PubMed...
  35. Evangelista, M., Blundell, K., Longtine, M. S., Chow, C. J., Adames, N., Pringle, J. R., Peter, M., Boone, C. (1997) Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis. Science, 276, 118-122. Go to original source... Go to PubMed...
  36. Hokin, L. E. (1985) Receptors and phosphoinositol-generated second messengers. Annu. Rev. Biochem., 54, 205-235. Go to original source... Go to PubMed...
  37. Takai, Y., Kishimoto, A., Kikkawa, U., Mori, T., Nishizuka, Y. (1979) Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system. Biochem. Biophys. Res. Commun., 91, 1218-1224. Go to original source... Go to PubMed...
  38. Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U., Nishizuka, Y. (1980) Activation of calcium and phospholipid dependent protein kinase by diacylglycerol: Its possible relation to phosphatidyl inositol turnover. J. Biol. Chem., 255, 2273-2276. Go to original source...
  39. Berridge, M. J., Irvine, R. F. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature, 312, 315-321. Go to original source... Go to PubMed...
  40. Watanabe, M., Chen, C.-Y., Levin, D. E. (1994) Saccharomyces cerevisiae PKC1 encodes a protein kinase C (PKC) homolog with a substrate specificity similar to that of mammalian PKC. J. Biol. Chem., 269, 16829-16836. Go to original source...
  41. Kamada, Y., Jung, U. S., Piotrowski, J., Levin, D. E. (1995) The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev., 9, 1559-1571. Go to original source... Go to PubMed...
  42. Gustin, M. C., Zhou, X.-L., Martinac, B., Kung, Ch. (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science, 242, 762-765. Go to original source... Go to PubMed...
  43. Batiza, A. F., Schulz, T., Masson, P. H. (1996) Yeast respond to hypotonic with a calcium pulse. J. Biol. Chem., 38, 23357-23362. Go to original source...
  44. Levin, D. E., Barlett-Heubusch, E. (1992) Mutants in the Saccharomyces cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J. Cell Biol., 116, 1221-1229. Go to original source... Go to PubMed...
  45. Davenport, K. R., Sohaskey, M., Kamada, Y., Levin, D. E., Gustin, M. C. (1995) A second osmosensing signal transduction pathway in yeast. J. Biol. Chem., 270, 30175-30161. Go to original source...
  46. Yoshida, S., Ohya, Y., Goebl, M., Nakano, A., Anraku, A. (1994) A novel gene, STT4, encodes a phospatidylinositol 4-kinase in the PKC1 protein kinase pathway of Saccharomyces cerevisiae. J. Biol. Chem., 269, 1166-1171. Go to original source...
  47. Gray, J. V., Ogas, J. P., Kamada, Y., Stone, M., Levin, D. E., Herskowitz, I. (1997) A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J., 16, 4924-4937. Go to original source... Go to PubMed...
  48. Verna, J., Lodder, A., Lee, K., Vagts, A., Ballester, R. (1997) A family of genes required for maintenance of cell wall integrity and for stress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 94, 13804-13809. Go to original source...
  49. Dirick, L., Boehm, T., Nasmyth, K. (1995) Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae. EMBO J., 14, 4803-4813. Go to original source...
  50. Zarzov, P., Mazzoni, C., Mann, C. (1996) The SLT2(MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. EMBO J., 15, 83-91. Go to original source... Go to PubMed...
  51. Marini, N. J., Meldrum, E., Buehrer, B., Hubberstey, A. V., Stone, D. E., Traynor-Kaplan, A., Reed, S. I. (1996) A pathway in the yeast cell division cycle linking protein kinase C (Pkc1) to activation of Cdc28 at START. EMBO J., 15, 3040-3052. Go to original source... Go to PubMed...
  52. Manning, B. D., Padmanabha, R., Snyder, M. (1997) The Rho-GEF Rom2p localizes to sites of polarized cell growth and participates in cytoskeletal functions in Saccharomyces cerevisiae. Mol. Biol. Cell, 8, 1929-1844. Go to original source... Go to PubMed...
  53. Peterson, J., Zheng, Y., Bender, L., Myers, A., Cerione, R., Bender, A. (1994) Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast. J. Cell Biol., 127, 1395-1406. Go to original source... Go to PubMed...
  54. Masuda, T., Tanaka, K., Nonaka, H., Yamochi, W., Maeda, A., Takai, Y. (1994) Molecular cloning and characterization of yeast rho GDP dissociation inhibitor. J. Biol. Chem., 269, 19713-19718. Go to original source...
  55. Mack, D., Nishimura, K., Dennehey, B. K., Arbogast, T., Parkinson, J., Toh-E, A., Pringle, J. R., Bender, A., Matsui, Y. (1996) Identification of the bud emergence gene BEM4 and its interaction with Rho-type GTPases in Saccharomyces cerevisiae. Mol. Cell. Biol., 16, 4387-4395. Go to original source... Go to PubMed...
  56. Schmidt, A., Bickle, M., Beck, T., Hall, M. N. (1997) The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell, 88, 531-542. Go to original source... Go to PubMed...
  57. Barbet, N. C., Schneider, U., Helliwell, S. B., Stansfield, I., Tuite, M. F., Hall, M. N. (1996) TOR controls translation initiation and early G1 progression in yeast. Mol. Biol. Cell, 7, 25-42. Go to original source... Go to PubMed...
  58. Schmidt, A., Kunz, J., Hall, M. N. (1996) TOR2 is required for organization of the actin cytoskeleton in yeast. Proc. Natl Acad. Sci. USA, 93, 13780-13785. Go to original source...
  59. Cid, V. J., Cenamor, R., Sánchez, M., Nombela, C. (1998) A mutation in the Rho1-GAP-encoding gene BEM2 of Saccharomyces cerevisiae affects morphogenesis and cell wall functionality. Microbiology, 144, 25-36. Go to original source... Go to PubMed...
  60. Varela, J. C. S., Mager, W. H. (1996) Response of Saccharomyces cerevisiae to changes in external osmolarity. Microbiology, 142, 721-731. Go to original source... Go to PubMed...
  61. Mendoza, I., Rubio, F., Rodriguez-Navarro, A., Pardo, J. M. (1994) The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem., 269, 8792-8796. Go to original source...
  62. Matheos, D. P., Kingsbury, T. J., Ahsan, U. S., Cunningham, K. W. (1997) Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev., 15, 3445-3458. Go to original source...
  63. Eng, W.-K., Faucette, L., McLaughlin, M. M., Cafferkey, R., Koltin, Y., Morris, R. A., Young, P. R., Johnson, R. K., Livi, G. P. (1994) The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporin A hypersensitivity and calcineurin-dependent growth. Gene, 151, 61-71. Go to original source... Go to PubMed...
  64. Nakamura, T., Ohmoto, T., Hirata, D., Tsuchyia, E., Miyakawa, T. (1996) Genetic evidence for the functional redundancy of the calcineurin- and Mpk1-mediated pathways in the regulation of cellular events important for growth in Saccharomyces cerevisiae. Mol. Gen. Genet., 251, 211-219. Go to original source... Go to PubMed...
  65. Mendoza, I., Quintero, F. J., Bressan, R. A., Hasegawa, P. M., Pardo, J. M. (1996) Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells. J. Biol. Chem., 271, 23061-23067. Go to original source... Go to PubMed...
  66. Brockerhoff, S. E., Davis, T. N. (1992) Calmodulin concentrates at regions of cell growth in Saccharomyces cerevisiae. J. Cell Biol., 118, 619-629. Go to original source... Go to PubMed...
  67. Stathopoulos, A. M., Cyert, M. S. (1997) Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev., 15, 3432-3444. Go to original source...
  68. Da Cruz e Silva, E. F., Hughes, V., McDonald, P., Stark, M. J., Cohen, P. T. (1991) Protein phosphatase 2B and protein phosphatase Z are Saccharomyces cerevisiae enzymes. Biochim. Biophys. Acta., 1089, 269-272. Go to original source... Go to PubMed...
  69. Posas, F., Casamayor, A., Morral, N., Ario, J. (1992) Molecular cloning and analysis of a yeast protein phosphatase with an unusual amino-terminal region. J. Biol. Chem., 15, 11734-11740. Go to original source...
  70. Posas, F., Casamayor, A., Ario, J. (1993) The PPZ protein phosphatases are involved in the maintainance of osmotic stability of yeast cells. FEBS Lett., 318, 282-286. Go to original source... Go to PubMed...
  71. Hughes, V., Muller, A., Stark, M. J., Cohen, P. T. (1993) Both isoforms of protein phosphatase Z are essential for the maintenance of cell size and integrity in Saccharomyces cerevisiae in response to osmotic stress. Eur. J. Biochem., 216, 269-279. Go to original source... Go to PubMed...
  72. Lee, K. S., Hines, L. K., Levin, D. E. (1993) A pair of functionally redundant yeast genes (PPZ1 and PPZ2) encoding type 1-related protein phosphatases function within the PKC1-mediated pathway. Mol. Cell. Biol., 13, 5843-5853. Go to original source... Go to PubMed...
  73. Posas, F., Camps, M., Ario, J. (1995) The PPZ protein phosphatases are important determinants of salt tolerance in yeast cells. J. Biol. Chem., 270, 13036-13041. Go to original source... Go to PubMed...
  74. Nickas, M. E., Yaffe, M. P. (1996) BRO1, a novel gene that interacts with components of the Pkc1p-mitogen-activated protein kinase pathway in Saccharomyces cerevisiae. Mol. Cell. Biol., 16, 2585-2593. Go to original source... Go to PubMed...
  75. Posas, F., Bollen, M., Stalmans, W., Ario, J. (1995) Biochemical characterization of recombinant yeast PPZ1, a protein phosphatase involved in salt tolerance. FEBS Lett., 368, 39-44. Go to original source... Go to PubMed...
  76. Appeltauer, U., Achstetter, T. (1989) Hormone-induced expression of the CHS1 gene from Saccharomyces cerevisiae. Eur. J. Biochem., 181, 243-247. Go to original source... Go to PubMed...
  77. Scheckman, R., Brawley, Y. (1979) Localized deposition of chitin on the yeast cell surface in response to mating pheromone. Proc. Natl. Acad. Sci. USA, 76, 645-649. Go to original source...
  78. Choi, W.-J., Santos, B., Durán, A., Cabib, E. (1994) Are yeast chitin synthases regulated at the transcriptional or posttranslational level? Mol. Cell. Biol., 14, 7685-7694. Go to original source... Go to PubMed...
  79. Valdivieso, M. H., Mol, P. C., Shaw, J. A., Cabib, E., Durán, A. (1991) CAL1, a gene required for activity of chitin synthase 3 in Saccharomyces cerevisiae. J. Cell. Biol., 114, 101-109. Go to original source... Go to PubMed...
  80. Omer, C. A., Gibbs, J. B. (1994) Protein prenylation in eukaryotic microorganisms: genetics, biology and biochemistry. Mol. Microbiol., 11, 219-225. Go to original source... Go to PubMed...
  81. Elion, E. A. (1995) Ste5: a meeting place for MAP kinases and their associates. Trends Cell. Biol., 5, 322-327. Go to original source... Go to PubMed...
  82. Errede, B., Cade, R. M., Yashar, B. M., Kamada, Y., Levin, D. E., Irie, K., Matsumoto, K. (1995) Dynamics and organization of MAP kinase signal pathways. Mol. Reprod. Dev., 42, 477-485. Go to original source... Go to PubMed...
  83. Buehrer, B. M., Errede, B. (1997) Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cerevisiae. Mol. Cell. Biol., 17, 6517-6525. Go to original source... Go to PubMed...
  84. Leberer, E., Wu, C., Leeuw, T., Fourest-Lieuvin, A., Segall, J. E., Thomas, D. Y. (1997) Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase. EMBO J., 16, 83-97. Go to original source... Go to PubMed...
  85. Li, R., Zheng, Y. Drubin, D. G. (1995) Regulation of cortical actin cytoskeleton assembly during polarized growth in budding yeast. J. Cell. Biol., 128, 599-615. Go to original source... Go to PubMed...
  86. Wu, C., Lytvyn, V., Thomas, D. Y., Leberer, E. (1997) The phosphorylation site for Ste20p-like protein kinases is essential for the function of myosin-I in yeast. J. Biol. Chem., 272, 30623-30626. Go to original source... Go to PubMed...
  87. Leeuw, T., Fourest-Lieuvin, A., Wu, C., Chenevert, J., Clark, K., Whiteway, M., Thomas, D. Y., Leberer, E. (1995) Pheromone response in yeast: Association of Bem1p with proteins of the MAP kinase cascade and actin. Science, 270, 1210-1213. Go to original source... Go to PubMed...
  88. Lyons, D. M., Mahanty, S. K., Choi, K.-Y., Manadhar, M., Elion, E. A. (1996) The SH3-domain protein Bem1 coordinates mitogen activated protein kinase cascade activation with cell cycle control in Saccharomyces cerevisiae. Mol. Cell. Biol., 16, 4095-4106. Go to original source... Go to PubMed...
  89. Ohsumi, Y., Anraku, Y. (1985) Specific induction of Ca2+ transport activity in MATa cells of Saccharomyces cerevisiae by a mating pheromone, alpha factor. J. Biol. Chem., 260, 10482- 10486. Go to original source...
  90. Iida, H., Yagawa, Y., Anraku, Y. (1990) Essential role for induced Ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. A study of [Ca2+]i in single Saccharomyces cerevisiae cells with imaging of fura-2. J. Biol. Chem., 265, 13391-13399. Go to original source...
  91. Cyert, M. S., Thorner, J. (1992) Regulatory subunit (CNB1 gene product) of yeast Ca2+/calmodulin-dependent phosphoprotein phosphatases is required for adaptation to pheromone. Mol. Cell. Biol., 12, 3460-3469. Go to original source... Go to PubMed...
  92. Moser, M. J., Geiser, J. R., Davis, T. N. (1996) Ca2+-camodulin promotes survival of pheromone-induced growth arrest by activation of calcineurin and Ca2+-calmodulin-dependent protein kinase. Mol. Cell. Biol., 16, 4824-4831. Go to original source... Go to PubMed...
  93. Withee, J. L., Mulholland, J., Jeng, R., Cyert, M. S. (1997) An essential role of the yeast pheromone-induced Ca2+ signal is to activate calcineurin. Mol. Biol. Cell, 8, 263-277. Go to original source... Go to PubMed...
  94. Iida, H., Nakamura, H., Ono, T., Okumura, M. S., Anraku, Y. (1994) MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol. Cell. Biol. 14, 8259-8271. Go to original source... Go to PubMed...
  95. Paidhungat, M., Garrett, S. (1997) A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol. Cell. Biol., 17, 6339-6347. Go to original source... Go to PubMed...
  96. Fischer, M., Schnell, N., Chattaway, J., Davies, P., Dixon, G., Sanders, D. (1997) The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating. FEBS Lett., 419, 259-262. Go to original source... Go to PubMed...
  97. Gimeno, C. J., Ljungdahl, P. O., Styles, C. A., Fink, G. R. (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: Regulation by starvation and RAS. Cell, 68, 1077-1090. Go to original source... Go to PubMed...
  98. Garret, J. M. (1997) The control of morphogenesis in Saccharomyces cerevisiae by Elm1p kinase is responsive to RAS/cAMP pathway activity and tryptophan availability. Mol. Microbiol., 26, 809-820. Go to original source... Go to PubMed...
  99. Liu, H., Styles, C. A., Fink, G. R. (1993) Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science, 262, 1741-1744. Go to original source... Go to PubMed...
  100. Moesch, H.-U., Roberts, R. L., Fink, G. R. (1996) Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 93, 5352-5356. Go to original source... Go to PubMed...
  101. Dorin, D., Cohen, L., Del Villar, K., Poullet, P., Mohr, R., Whiteway, M., Witte, O., Tamanoi, F. (1995) Kir, a novel Ras-family G-protein, induces invasive pseudohyphal growth in Saccharomyces cerevisiae. Oncogene, 11, 2267-2271. Go to PubMed...
  102. Roberts, R. L., Mosch, H. U., Fink, G. R. (1997) 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae. Cell, 89, 1055-1065. Go to original source... Go to PubMed...
  103. Cook, J. G., Bardwell, L., Thorner, J. (1997) Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentousgrowth signalling pathway. Science, 390, 85-88. Go to original source...
  104. Cook, J. G., Bardwell, L., Kron, S. J., Thorner, J. (1996) Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Gen. Dev., 10, 2831-2848. Go to original source...
  105. Tedford, K., Kim, S., Sa, D., Stevens, K., Tyers, M. (1997) Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr. Biol., 7, 228-238. Go to original source... Go to PubMed...
  106. Lambrechts, M. G., Bauer, F. F., Marmur, J. Pretorius, I. S. (1996) Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc. Natl. Acad. Sci. USA, 93, 8419-8424. Go to original source... Go to PubMed...