Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. X:X | DOI: 10.5507/bp.2025.022

Advancements in immunotherapy for oropharyngeal cancer: Current landscape and future prospects

Xixi Shen1, 2, Shizhi He1, 2
1 Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
2 Key Laboratory of Otorhinolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, 100730, China

Oropharyngeal cancer (OPC), affecting the tonsils, base of the tongue, and soft palate, has witnessed a notable increase in incidence, particularly among cases linked to human papillomavirus (HPV) infection. This epidemiological shift has led to changes in treatment strategies, with immunotherapy emerging as a promising alternative to conventional modalities such as surgery, radiation, and chemotherapy, which are often associated with significant toxicity. This systematic review aims to evaluate the current landscape of immunotherapeutic interventions in OPC, including immune checkpoint inhibitors, monoclonal antibodies, adoptive T cell therapies, and cancer vaccines. It also explores the influence of HPV status, the development of predictive biomarkers, and the direction of ongoing clinical trials. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science for studies published between 2010 and 2025. Keywords included "oropharyngeal cancer," "HPV," "immunotherapy," "checkpoint inhibitors," "monoclonal antibodies," "cancer vaccines," and "T cell therapy." Eligible peer-reviewed articles, clinical trials, and reviews focusing on immunotherapy for OPC were included. Data were synthesized based on immunotherapy type, HPV status, clinical outcomes, and biomarker relevance. The review highlights substantial evidence supporting immune checkpoint inhibitors (e.g., anti-PD-1/PD-L1) in improving survival and minimizing adverse effects, particularly in HPV-positive patients. Monoclonal antibodies enhance immune targeting of tumor cells, while cancer vaccines and adoptive T cell therapies show encouraging preliminary outcomes. HPV status and emerging biomarkers are critical in predicting responses and guiding patient-specific therapies. Immunotherapy offers a transformative opportunity in OPC management. Ongoing trials and biomarker research are key to advancing personalized treatment strategies.

Keywords: biomarkers, cancer vaccines, immunotherapy, immune checkpoint inhibitors, monoclonal antibodies, oropharyngeal cancer, T cell therapy

Received: April 29, 2025; Revised: June 23, 2025; Accepted: July 10, 2025; Prepublished online: August 13, 2025 

Download citation

References

  1. . Thavaraj S, Jones A. Presentation, diagnosis and prognosis of squamous cell carcinomas of the oral mucosa and oropharynx. In: Pathological Basis of Oral and Maxillofacial Diseases 2025. p. 498-530. Go to original source...
  2. . Tan YJ, Hou KWS, Lin GSS, Wun JLS, Abdul WNAWA, Ko WLL. The prevalence of human papillomavirus associated oropharyngeal and oral squamous cell carcinoma in Asian countries: a systematic review and large-scale meta-analysis. Acta Marisiensis Ser Med 2023;69(2):77-92. Go to original source...
  3. . Krsek A, Baticic L, Sotosek V, Braut T. The role of biomarkers in HPV-positive head and neck squamous cell carcinoma: towards precision medicine. Diagnostics (Basel) 2024;14(13):1448. Go to original source... Go to PubMed...
  4. . American Cancer Society. Facts & Figures 2024. Atlanta: American Cancer Society; 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK448132/
  5. . Jamal Z, Anjum F. Oropharyngeal squamous cell carcinoma. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Apr 27. Available from: https://www.ncbi.nlm.nih.gov/books/NBK563268/
  6. . Avery EW, Joshi K, Mehra S, Mahajan A. Role of PET/CT in oropharyngeal cancers. Cancers (Basel) 2023;15(9):2651. doi: 10.3390/cancers15092651 Go to original source... Go to PubMed...
  7. . Maxwell JH, Grandis JR, Ferris RL. HPV-associated head and neck cancer: unique features of epidemiology and clinical management. Annu Rev Med 2015;67:91-101. doi: 10.1146/annurev-med-051914-021907 Go to original source... Go to PubMed...
  8. . World Health Organization. Human papillomavirus and cancer. Geneva: WHO; 2024 Mar 5. Available from: https://www.who.int/news-room/fact-sheets/detail/human-papilloma-virus-and-cancer
  9. . Preissner SH, Nahles S, Preissner S, Heiland M, Koerdt S. Influence of sex on survival rates of HPV-positive oropharyngeal cancers. Front Oncol 2022;12:917890. Go to original source... Go to PubMed...
  10. . Gupta SM, Mania-Pramanik J. RETRACTED ARTICLE: Molecular mechanisms in progression of HPV-associated cervical carcinogenesis. J Biomed Sci 2019;26(1):28. Go to original source... Go to PubMed...
  11. . Nelson CW, Mirabello L. Human papillomavirus genomics: understanding carcinogenicity. Tumour Virus Res 2023;15:200258. doi: 10.1016/j.tvr.2023.200258 Go to original source... Go to PubMed...
  12. . Oguejiofor K, Galletta-Williams H, Dovedi SJ, Roberts DL, Stern PL, West CM. Distinct patterns of infiltrating CD8+ T cells in HPV+ and CD68 macrophages in HPV- oropharyngeal squamous cell carcinomas are associated with better clinical outcome but PD-L1 expression is not prognostic. Oncotarget 2017;8(9):14416-27. doi: 10.18632/oncotarget.14796 Go to original source... Go to PubMed...
  13. . Garg P, Pareek S, Kulkarni P, Horne D, Salgia R, Singhal SS. Next-generation immunotherapy: advancing clinical applications in cancer treatment. J Clin Med 2024;13(21):6537. doi: 10.3390/jcm13216537 Go to original source... Go to PubMed...
  14. . Kciuk M, Yahya EB, Mohamed MMI, Rashid S, Iqbal MO, Kontek R, et al. Recent advances in molecular mechanisms of cancer immunotherapy. Cancers (Basel) 2023;15(10):2721. doi: 10.3390/cancers15102721 Go to original source... Go to PubMed...
  15. . Theivendren P, Kunjiappan S, Pavadai P, Ravi K, Murugavel A, Dayalan A, Kumar AS. Revolutionizing cancer immunotherapy: emerging nanotechnology-driven drug delivery systems for enhanced therapeutic efficacy. ACS Meas Sci Au 2024;5(1):31-5. doi: 10.1021/acsmeasuresciau.4c00062 Go to original source... Go to PubMed...
  16. . Julian R, Savani M, Bauman JE. Immunotherapy approaches in HPV-associated head and neck cancer. Cancers (Basel) 2021;13(23):5889. doi: 10.3390/cancers13235889 Go to original source... Go to PubMed...
  17. . Faghfuri E. Recent advances in personalized cancer immunotherapy with immune checkpoint inhibitors, T cells and vaccines. Pers Med 2023;21(1):45-57. doi: 10.2217/pme-2023-0054 Go to original source... Go to PubMed...
  18. . Nagasaki J, Ishino T, Togashi Y. Mechanisms of resistance to immune checkpoint inhibitors. Cancer Sci 2022;113(10):3303-12. doi: 10.1111/cas.15497 Go to original source... Go to PubMed...
  19. . Wojtukiewicz MZ, Rek MM, Karpowicz K, Górska M, Polityńska B, Wojtukiewicz AM. Inhibitors of immune checkpoints - PD-1, PD-L1, CTLA-4 - new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev 2021;40(3):949-82. doi: 10.1007/s10555-021-09976-0 Go to original source... Go to PubMed...
  20. . Shamseddine AA, Burman B, Lee NY, Zamarin D, Riaz N. Tumor immunity and immunotherapy for HPV-related cancers. Cancer Discov 2021;11(8):1896-912. doi: 10.1158/2159-8290.cd-20-1760 Go to original source... Go to PubMed...
  21. . Perri F, Ionna F, Longo F, Della Vittoria Scarpati G, De Angelis C, Ottaiano A, Botti G, Caponigro F. Immune response against head and neck cancer: biological mechanisms and implication on therapy. Transl Oncol 2019;13(2):262-74. doi: 10.1016/j.tranon.2019.11.008 Go to original source... Go to PubMed...
  22. . Bang H, Kim H, Lee S, Shim H, Hwang J, Bae W, Park J, Choi Y, Jeong M, Lee C. Clinical prognostic factors to guide treatment strategy for HPV-positive oropharyngeal cancer using treatment outcomes of induction chemotherapy: A real-world experience. Oncol Lett 2024;28(2):391. doi: 10.3892/ol.2024.14524 Go to original source... Go to PubMed...
  23. . Harrington KJ, Burtness B, Greil R, Soulières D, Tahara M, De Castro G, Ferris RL, Psyrri A, Fayette J, Licitra L, Rischin D, Jonker D, Rizvi N, Mesia R, Taheri M, Chera B, Worden F, Le Q, Bauman JE, Gillison ML. Pembrolizumab with or without chemotherapy in recurrent or metastatic head and neck squamous cell carcinoma: Updated results of the Phase III KEYNOTE‑048 study. J Clin Oncol 2022;41(4):790-802. doi: 10.1200/jco.21.02508 Go to original source... Go to PubMed...
  24. . Haddad RI, Harrington K, Tahara M, Ferris RL, Gillison M, Fayette J, Guigay J, Colevas AD, Even C, Worden F, Saba NF, Iglesias‑Docampo LC, Licitra L, Rordorf T, Kiyota N, Monga M, Lynch M, Geese WJ, Kopit J, Shaw JW. Nivolumab plus ipilimumab versus EXTREME regimen as first-line treatment for recurrent/metastatic squamous cell carcinoma of the head and neck: The final results of CheckMate 651. J Clin Oncol 2022; 41(12):2166-80. doi: 10.1200/jco.22.00332 Go to original source... Go to PubMed...
  25. . Struckmeier A, Gosau M, Smeets R. Immunotherapeutic strategies beyond the PD-1/PD-L1 pathway in head and neck squamous cell carcinoma - A scoping review on current developments in agents targeting TIM-3, TIGIT, LAG-3, and VISTA. Oral Oncol 2024;161:107145. doi: 10.1016/j.oraloncology.2024.107145 Go to original source... Go to PubMed...
  26. . Leal JL, John T. Immunotherapy in advanced NSCLC without driver mutations: Available therapeutic alternatives after progression and future treatment options. Clin Lung Cancer 2022;23(8):643-58. doi: 10.1016/j.cllc.2022.08.009 Go to original source... Go to PubMed...
  27. . Zhong W, Liu X, Zhu Z, Li Q, Li K. High levels of Tim-3+ Foxp3+ Treg cells in the tumor microenvironment is a prognostic indicator of poor survival of diffuse large B cell lymphoma patients. Int Immunopharmacol 2021;96:107662. doi: 10.1016/j.intimp.2021.107662 Go to original source... Go to PubMed...
  28. . Leon E, Ranganathan R, Savoldo B. Adoptive T cell therapy: Boosting the immune system to fight cancer. Semin Immunol 2020;49:101437. doi: 10.1016/j.smim.2020.101437 Go to original source... Go to PubMed...
  29. . Kazemi MH, Sadri M, Najafi A, Rahimi A, Baghernejadan Z, Khorramdelazad H, Falak R. Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango? Front Immunol 2022;13:1018962. doi: 10.3389/fimmu.2022.1018962 Go to original source... Go to PubMed...
  30. . Jiang Y, Chen M, Nie H, Yuan Y. PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations. Hum Vaccin Immunother 2019;15(5):1111-22. doi: 10.1080/21645515.2019.1571892 Go to original source... Go to PubMed...
  31. . Uscanga-Palomeque AC, Chávez-Escamilla AK, Alvizo-Báez CA, Saavedra-Alonso S, Terrazas-Armendáriz LD, Tamez-Guerra RS, et al. CAR-T cell therapy: From the shop to cancer therapy. Int J Mol Sci 2023;24(21):15688. doi: 10.3390/ijms242115688 Go to original source... Go to PubMed...
  32. . Guzman G, Reed MR, Bielamowicz K, Koss B, Rodriguez A. CAR-T therapies in solid tumors: Opportunities and challenges. Curr Oncol Rep 2023;25(5):479--89. doi: 10.1007/s11912-023-01380-x Go to original source... Go to PubMed...
  33. . Shafer P, Kelly LM, Hoyos V. Cancer therapy with TCR-engineered T cells: Current strategies, challenges, and prospects. Front Immunol 2022;13:835762. doi: 10.3389/fimmu.2022.835762 Go to original source... Go to PubMed...
  34. . Choi KH, Song JH, Kim YS, Moon SH, Lee JS, Oh YT, Oh D, Kim JH, Kim JW. Survey of radiation field and dose in HPV-positive oropharyngeal cancer: Is de-escalation actually applied in clinical practice? Radiat Oncol J 2021;39(3):174-83. doi: 10.3857/roj.2021.00556 Go to original source... Go to PubMed...
  35. . Lv Z, Luo F, Chu Y. Strategies for overcoming bottlenecks in allogeneic CAR-T cell therapy. Front Immunol 2023;14:1199145. doi: 10.3389/fimmu.2023.1199145 Go to original source... Go to PubMed...
  36. . Moradi V, Omidkhoda A, Ahmadbeigi N. The paths and challenges of "off-the-shelf" CAR-T cell therapy: An overview of clinical trials. Biomed Pharmacother 2023;169:115888. doi: 10.1016/j.biopha.2023.115888 Go to original source... Go to PubMed...
  37. . Pavlovic K, Tristán‑Manzano M, Maldonado‑Pérez N, Cor­tijo‑Gu­tierrez M, Sánchez‑Hernández S, Justicia‑Lirio P, Carmona MD, Herre­ra C, Martin F, Benabdellah K. Using gene editing approaches to fine‑tune the immune system. Front Immunol 2020;11:570672. doi: 10.3389/fimmu.2020.570672 Go to original source... Go to PubMed...
  38. . Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: From molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024;9(1):274. doi:10.1038/s41392-024-01979-x Go to original source... Go to PubMed...
  39. . Koedam J, Wermke M, Ehninger A, Cartellieri M, Ehninger G. Chimeric antigen receptor T-cell therapy in acute myeloid leukemia. Curr Opin Hematol 2022;29(2):74-83. doi: 10.1097/moh.0000000000000703 Go to original source... Go to PubMed...
  40. . Wei F, Cheng X, Xue JZ, Xue S. Emerging strategies in TCR-engineered T cells. Front Immunol 2022;13:850358. doi: 10.3389/fimmu.2022.850358 Go to original source... Go to PubMed...
  41. . Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies 2020;9(3):34. doi: 10.3390/antib9030034 Go to original source... Go to PubMed...
  42. . Lee H, Li C, Lee C. EGFR overexpression and macrophage infiltration correlate with poorer prognosis in HPV-negative oropharyngeal cancer via STAT6 signaling. Head Neck 2024;46(6):1294-303. doi: 10.1002/hed.27734 Go to original source... Go to PubMed...
  43. . Cassell A, Grandis JR. Investigational EGFR-targeted therapy in head and neck squamous cell carcinoma. Expert Opin Investig Drugs 2010;19(6):709-22. doi: 10.1517/13543781003769844 Go to original source... Go to PubMed...
  44. . Sanwick AM, Chaple IF. Targeted radionuclide therapy for head and neck squamous cell carcinoma: a review. Front Oncol 2024;14:1445191. doi: 10.3389/fonc.2024.1445191 Go to original source... Go to PubMed...
  45. . Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer 2022;21(1):28. doi: 10.1186/s12943-021-01489-2 Go to original source... Go to PubMed...
  46. . Burtness B, Harrington KJ, Greil R, Soulières D, Tahara M, De Castro G, Psyrri A, Basté N, Neupane P, Bratland Å, Fuereder T, Hughes BGM, Mesía R, Ngamphaiboon N, Rordorf T, Wan Ishak WZ, Hong R‑L, González Mendoza R, Roy A, Zhang Y, Gumuscu B, Cheng JD, Jin F, Rischin D. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE‑048): a randomised, open‑label, phase 3 study. Lancet 2019; 394(10212):1915-28. doi: 10.1016/S0140‑6736(19)32591‑7 Go to original source...
  47. . Riccardi F, Bo MD, Macor P, Toffoli G. A comprehensive overview on antibody-drug conjugates: from the conceptualization to cancer therapy. Front Pharmacol 2023;14:1274088. doi: 10.3389/fphar.2023.1274088 Go to original source... Go to PubMed...
  48. . Bakema JE, Stigter‑van Walsum MS, Harris JR, Ganzevles SH, van de Ven R, Brakenhoff RH, et al. An Antibody-Drug Conjugate Directed to Tissue Factor Shows Preclinical Antitumor Activity in Head and Neck Cancer as a Single Agent and in Combination with Chemoradiotherapy. Mol Cancer Ther 2023;23(2):187-98. doi: 10.1158/1535-7163.mct-23-0298 Go to original source... Go to PubMed...
  49. . Shah A, Rauth S, Aithal A, Kaur S, Ganguly K, Orzechowski C, Varshney GC, Jain M, Batra SK. The current landscape of antibody-based therapies in solid malignancies. Theranostics 2021;11(3):1493-512. doi: 10.7150/thno.52614 Go to original source... Go to PubMed...
  50. . Kol A, Van Scheltinga AT, Pool M, Gerdes C, de Vries E, de Jong S. ADCC responses and blocking of EGFR‑mediated signaling and cell growth by combining the anti‑EGFR antibodies imgatuzumab and cetuximab in NSCLC cells. Oncotarget 2017; 8(28):45432-46. doi: 10.18632/oncotarget.17139 Go to original source... Go to PubMed...
  51. . Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno‑therapeutics: platforms and current progress. J Hematol Oncol 2022;15(1):28. doi: 10.1186/s13045-022-01247-x Go to original source... Go to PubMed...
  52. . Filippini DM, Broseghini E, Liberale C, Gallerani G, Siepe G, Nobili E, Ferracin M, Molteni G. Vaccine‑Based immunotherapy for oropharyngeal and nasopharyngeal cancers. J Clin Med 2025;14(4):1170. doi: 10.3390/jcm14041170 Go to original source... Go to PubMed...
  53. . Janes ME, Gottlieb AP, Park KS, Zhao Z, Mitragotri S. Cancer vaccines in the clinic. Bioengineering Transl Med 2024;9(1):e10588. doi: 10.1002/btm2.10588 Go to original source... Go to PubMed...
  54. . Ding H, Zhang J, Zhang F, Xu Y, Yu Y, Liang W, Li Q. Effectiveness of combination therapy with ISA101 vaccine for the treatment of human papillomavirus‑induced cervical cancer. Front Oncol 2022;12:990877. doi: 10.3389/fonc.2022.990877 Go to original source... Go to PubMed...
  55. . Lee MY, Allen CT. Immunotherapy for HPV malignancies. Semin Radiat Oncol 2021;31(4):361-70. doi: 10.1016/j.semradonc.2021.02.008 Go to original source... Go to PubMed...
  56. . Wu Z, Wang Y, Jin X, Wang L. Universal CAR cell therapy: Challenges and expanding applications. Transl Oncol 2024;51:102147. doi: 10.1016/j.tranon.2024.102147 Go to original source... Go to PubMed...
  57. . Lee K, Yam JWP, Mao X. Dendritic Cell Vaccines: A Shift from Conventional Approach to New Generations. Cells 2023;12(17):2147. doi: 10.3390/cells12172147 Go to original source... Go to PubMed...
  58. . Tardón MC, Allard M, Dutoit V, Dietrich PY, Walker PR. Peptides as cancer vaccines. Curr Opin Pharmacol 2019;47:20-6. Go to original source... Go to PubMed...
  59. . Agrawal B, Gupta N, Vedi S, Singh S, Li W, Garg S, Li J, Kumar R. Heterologous immunity between adenoviruses and hepatitis C virus (HCV): recombinant adenovirus vaccine vectors containing antigens from unrelated pathogens induce cross‑reactive immunity against HCV antigens. Cells 2019;8(5):507. Go to original source... Go to PubMed...
  60. . Hato L, Vizcay A, Eguren I, Pérez‑Gracia JL, Rodríguez J, Pérez‑Larraya JG, Sarobe P, Inogés S, López Díaz de Cerio A, Santisteban M. Dendritic cells in cancer immunology and immunotherapy. Cancers 2024;16(5):981. doi: 10.3390/cancers16050981 Go to original source... Go to PubMed...
  61. . Kim KY, Lewis JS, Chen Z. Current status of clinical testing for human papillomavirus in oropharyngeal squamous cell carcinoma. J Pathol Clin Res 2018;4(4):213-26. doi: 10.1002/cjp2.111 Go to original source... Go to PubMed...
  62. . Shanmugam G, Jeyaraj G, Sarkar K. Molecular Mechanisms and Diagnostic Innovations in HPV-Associated Head and Neck Squamous Cell Carcinomas: Insights into Integration, Epigenetic Modifications, and Biomarker Applications. Oral Oncol Rep 2024;13:100710. doi: 10.1016/j.oor.2024.100710 Go to original source...
  63. . Ndon S, Singh A, Ha PK, Aswani J, Chan JY‑K, Xu MJ. Human Papillomavirus‑Associated Oropharyngeal Cancer: Global Epidemiology and Public Policy Implications. Cancers 2023;15(16):4080. doi: 10.3390/cancers15164080 Go to original source... Go to PubMed...
  64. . Pan C, Issaeva N, Yarbrough WG. HPV-driven oropharyngeal cancer: current knowledge of molecular biology and mechanisms of carcinogenesis. Cancers Head Neck 2018;3(1):12. doi: 10.1186/s41199-018-0039-3 Go to original source... Go to PubMed...
  65. . Bandidwattanawong C. Squamous cell carcinoma of head and neck. In: IntechOpen eBooks [Internet]. Available from: https://www.intechopen.com/chapters/80278.
  66. . Lechner M, Liu J, Masterson L, Fenton TR. HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management. Nat Rev Clin Oncol 2022;19(5):306-27. doi: 10.1038/s41571-021-00569-3 Go to original source...
  67. . Husain H, Psyrri A, Markovic A, Rampias T, Pectasides E, Wang H, Slebos R, Yarbrough W.G, Burtness B, Chung C.H. Nuclear epidermal growth factor receptor and p16 expression in head and neck squamous cell carcinoma. Laryngoscope 2012;122(12):2762-8. doi: 10.1002/lary.23647 Go to original source... Go to PubMed...
  68. . Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023;22(1):187. doi: 10.1186/s12943-023-01885-w Go to original source... Go to PubMed...
  69. . Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers 2020;6(1):92. doi: 10.1038/s41572-020-00224-3 Go to original source... Go to PubMed...
  70. . Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, Worden F, Saba NF, Iglesias‑Docampo LC, Haddad R, Rordorf T, Kiyota N, Tahara M, Monga M, Lynch M, Geese WJ, Kopit J, Shaw JW, Gillison ML. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016;375(19):1856-67. doi: 10.1056/NEJMoa1602252 Go to original source... Go to PubMed...
  71. . Cillo AR, Kürten CH, Tabib T, Qi Z, Onkar S, Wang T, Liu A, Duvvuri U, Kim S, Soose RJ, Oesterreich S, Chen W, Lafyatis R, Bruno TC, Ferris RL, Vignali DA. Immune landscape of viral- and carcinogen-driven head and neck cancer. Immunity 2020;52(1):183-99.e9. doi: 10.1016/j.immuni.2019.11.014 Go to original source... Go to PubMed...
  72. . Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov 2020;10(12):1808-25. doi: 10.1158/2159-8290.cd-20-0522 Go to original source... Go to PubMed...
  73. . Galuppini F, Pozzo CAD, Deckert J, Loupakis F, Fassan M, Baffa R. Tumor mutation burden: from comprehensive mutational screening to the clinic. Cancer Cell Int 2019;19(1):233. doi: 10.1186/s12935-019-0929-4 Go to original source... Go to PubMed...
  74. . Tosi A, Parisatto B, Menegaldo A, Spinato G, Guido M, Del Mistro A, Bussani R, Zanconati F, Tofanelli M, Tirelli G, Boscolo-Rizzo P, Rosato A. The immune microenvironment of HPV-positive and HPV-negative oropharyngeal squamous cell carcinoma: a multiparametric quantitative and spatial analysis unveils a rationale to target treatment-naïve tumors with immune checkpoint inhibitors. J Exp Clin Cancer Res 2022;41(1):130. doi: 10.1186/s13046-022-02481-4 Go to original source... Go to PubMed...
  75. . Ferris RL, Westra WH. Oropharyngeal carcinoma with a special focus on HPV-related squamous cell carcinoma. Annu Rev Pathol Mech Dis 2023;18(1):515-35. doi: 10.1146/annurev-pathmechdis-031521-041424 Go to original source... Go to PubMed...
  76. . Shenker RF, Razavian NB, D'Agostino RB Jr, Mowery YM, Brizel DM, Hughes RT. Clinical outcomes of oropharyngeal squamous cell carcinoma stratified by human papillomavirus subtype: A systematic review and meta-analysis. Oral Oncol 2023;148:106644. doi: 10.1016/j.oraloncology.2023.106644 Go to original source... Go to PubMed...
  77. . Gallus R, Nauta IH, Marklund L, Rizzo D, Crescio C, Mureddu L, Tropiano P, Delogu G, Bussu F. Accuracy of p16 IHC in classifying HPV-driven OPSCC in different populations. Cancers 2023;15(3):656. doi: 10.3390/cancers15030656 Go to original source... Go to PubMed...
  78. . Mehanna H, Taberna M, Von Buchwald C, Tous S, Brooks J, Mena M, Morey F, Grønhøj C, Rasmussen JH, Garset-Zamani M, Bruni L, Batis N, Brakenhoff RH, Leemans CR, De Jong RJB, Klussmann JP, Wuerdemann N, Wagner S, Dalianis T, Alemany L. Prognostic implications of p16 and HPV discordance in oropharyngeal cancer (HNCIG-EPIC-OPC): a multicenter, multinational, individual patient data analysis. Lancet Oncol 2023;24(3):239-51. doi: 10.1016/s1470-2045(23)00013-x Go to original source... Go to PubMed...
  79. . Shenker RF, May NH, Waltonen JD, Yang JP, O'Neill SS, Frizzell BA, Greven KM, Hughes RT. Comparing outcomes for patients with human papillomavirus (HPV) type 16 versus other high-risk HPV types in oropharyngeal squamous cell carcinoma. Head Neck Pathol 2021;15(3):866-74. doi: 10.1007/s12105-021-01308-6 Go to original source... Go to PubMed...
  80. . Wotman MT, Ivic-Pavlicic T, Westra WH, Gold B, D'Andrea M, Genden EM, Misiukiewicz K, Roof SA, Taioli E, Posner M. Association of human papillomavirus genotype and phylogenic clade with oropharyngeal cancer outcomes. Oncologist 2024;29(11):966-77. doi: 10.1093/oncolo/oyae202 Go to original source... Go to PubMed...
  81. . Rosenberg AJ, Agrawal N, Pearson A, Gooi Z, Blair E, Cursio J, Juloori A, Ginat D, Howard A, Chin J, Kochanny S, Foster C, Cipriani N, Lingen M, Izumchenko E, Seiwert TY, Haraf D, Vokes EE. Risk and response adapted de-intensified treatment for HPV-associated oropharyngeal cancer: Optima paradigm expanded experience. Oral Oncol 2021;122:105566. doi: 10.1016/j.oraloncology.2021.105566 Go to original source... Go to PubMed...
  82. . Golusinski P, Corry J, Van Poorten V, Simo R, Sjögren E, Mäkitie A, Kowalski LP, Langendijk J, Braakhuis BJ, Takes RP, Coca-Pelaz A, Rodrigo JP, Willems SM, Forastiere AA, De Bree R, Saba NF, Teng Y, Sanabria A, Di Maio P, Ferlito A. De-escalation studies in HPV-positive oropharyngeal cancer: How should we proceed? Oral Oncol 2021;123:105620. doi: 10.1016/j.oraloncology.2021.105620 Go to original source... Go to PubMed...
  83. . Bhattasali O, Ryoo JJ, Thompson LD, Abdalla IA, Chen J, Iganej S. Impact of chemotherapy regimen on treatment outcomes in patients with HPV-associated oropharyngeal cancer with T4 disease treated with definitive concurrent chemoradiation. Oral Oncol 2019;95:74-8. doi: 10.1016/j.oraloncology.2019.06.007 Go to original source... Go to PubMed...
  84. . Fan J, Shen X, Wang Y, Zhou H, Liu G, Li Y, Xu Z. Biomarkers for immune checkpoint therapy targeting programmed death 1 and programmed death ligand 1. Biomed Pharmacother 2020;130:110621. doi: 10.1016/j.biopha.2020.110621 Go to original source... Go to PubMed...
  85. . Kumar S, Singh SK, Rana B, Rana A. Tumor-infiltrating CD8+ T cell antitumor efficacy and exhaustion: molecular insights. Drug Discov Today 2021;26(4):951-67. doi: 10.1016/j.drudis.2021.01.002 Go to original source... Go to PubMed...
  86. . Gavrielatou N, Doumas S, Economopoulou P, Foukas PG, Psyrri A. Biomarkers for immunotherapy response in head and neck cancer. Cancer Treat Rev 2020;84:101977. doi: 10.1016/j.ctrv.2020.101977 Go to original source... Go to PubMed...
  87. . Pauken KE, Lagattuta KA, Lu BY, Lucca LE, Daud AI, Hafler DA, Kluger HM, Raychaudhuri S, Sharpe AH. TCR-sequencing in cancer and autoimmunity: barcodes and beyond. Trends Immunol 2022;43(3):180-94. doi: 10.1016/j.it.2022.01.002 Go to original source... Go to PubMed...
  88. . Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, Sun T, Wei J. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther 2024;9(1):336. doi: 10.1038/s41392-024-02021-w Go to original source... Go to PubMed...
  89. . Gameiro S, Zhang A, Ghasemi F, Barrett J, Nichols A, Mymryk J. Analysis of Class I Major Histocompatibility complex gene transcription in human tumors caused by human papillomavirus infection. Viruses 2017;9(9):252. doi: 10.3390/v9090252 Go to original source... Go to PubMed...
  90. . Kong S, Zhang J, Wang L, Li W, Guo H, He Q, Lou H, Ding L, Yang B. Mechanisms of Low MHC I Expression and Strategies for Targeting MHC I with Small Molecules in Cancer Immunotherapy. Cancer Lett 2024;611:217432. doi: 10.1016/j.canlet.2024.217432 Go to original source... Go to PubMed...
  91. . Lechien JR, Descamps G, Seminerio I, Furgiuele S, Dequanter D, Mouawad F, Badoual C, Journe F, Saussez S. HPV involvement in the tumor microenvironment and immune treatment in head and neck squamous cell carcinomas. Cancers 2020;12(5):1060. doi: 10.3390/cancers12051060 Go to original source... Go to PubMed...
  92. . Zhou C, Tuong ZK, Frazer IH. Papillomavirus immune evasion strategies target the infected cell and the local immune system. Front Oncol 2019;9:682. doi: 10.3389/fonc.2019.00682 Go to original source... Go to PubMed...
  93. . Espinoza H, Ha KT, Pham TT, Espinoza JL. Genetic predisposition to persistent human Papillomavirus-Infection and Virus-Induced cancers. Microorganisms 2021;9(10):2092. doi: 10.3390/microorganisms9102092 Go to original source... Go to PubMed...
  94. . Wang B, Han Y, Zhang Y, Zhao Q, Wang H, Wei J, Meng L, Xin Y, Jiang X. Overcoming acquired resistance to cancer immune checkpoint therapy: potential strategies based on molecular mechanisms. Cell Biosci 2023;13(1):33. doi: 10.1186/s13578-023-01073-9 Go to original source... Go to PubMed...
  95. . Zhang A, Fan T, Liu Y, Yu G, Li C, Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer 2024;23(1):54. doi: 10.1186/s12943-024-02156-y Go to original source... Go to PubMed...
  96. . Das S, Johnson DB. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J Immunother Cancer 2019;7(1):306. doi: 10.1186/s40425-019-0805-8 Go to original source... Go to PubMed...
  97. . Shin YE, Kumar A, Guo JJ. Spending, Utilization, and Price Trends for Immune Checkpoint Inhibitors in US Medicaid Programs: An Empirical Analysis from 2011 to 2021. Clin Drug Investig 2023;43(4):289-98. doi: 10.1007/s40261-023-01254-x Go to original source... Go to PubMed...
  98. . Chabeda A, Yanez RJ, Lamprecht R, Meyers AE, Rybicki EP, Hitzeroth II. Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus Res 2017;5:46-58. doi: 10.1016/j.pvr.2017.12.006 Go to original source... Go to PubMed...
  99. . Kaczmarek M, Poznańska J, Fechner F, Michalska N, Paszkowska S, Napierała A, Mackiewicz A. Cancer Vaccine Therapeutics: Limitations and Effectiveness - A Literature Review. Cells 2023;12(17):2159. doi: 10.3390/cells12172159 Go to original source... Go to PubMed...
  100. . Fountzilas E, Pearce T, Baysal MA, Chakraborty A, Tsimberidou AM. Convergence of evolving artificial intelligence and machine learning techniques in precision oncology. NPJ Digit Med 2025;8(1):14. doi: 10.1038/s41746-025-01471-y Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.