Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. X:X | DOI: 10.5507/bp.2025.015
Vitreous proteomics in rhegmatogenous retinal detachment and proliferative vitreoretinopathy
- 1 Department of Ophthalmology, Military University Hospital Prague, Prague, Czech Republic
- 2 1st Faculty of Medicine of Charles University, Prague, Czech Republic
- 3 Department of Ophthalmology, School of Medicine, Queen's University, Kingston, Canada
Rhegmatogenous retinal detachment (RRD) is a serious ophthalmic condition that, if untreated, can result in significant vision loss. Proliferative vitreoretinopathy (PVR) often complicates RRD and is the leading cause of surgical failure. Proteomic analysis of the vitreous has emerged as a powerful tool for elucidating the molecular mechanisms underlying RRD and PVR. This article reviews proteomic findings related to these conditions. A comprehensive literature search on PubMed was conducted, focusing on studies of vitreous proteomics in RRD and PVR published between 1988 and August 2024. Relevant findings on protein expression, metabolic pathways, and therapeutic targets were synthesized. Proteomic studies reveal significant alterations in photoreceptor-specific proteins, such as rhodopsin and Monocyte Chemoattractant Protein-1 (MCP-1), associated with apoptosis and inflammation during RRD. Metabolic dysregulation is evidenced by changes in glycolytic enzymes and antioxidants, including downregulation of peroxiredoxin-2 and ascorbic acid, suggesting impaired energy production and oxidative stress. Elevated cytokines, complement proteins, and matrix metalloproteinases highlight the role of inflammation and extracellular matrix remodelling in disease progression. Cytokine expression in PVR demonstrates distinct temporal patterns, with early stages marked by T-cell activation and mTOR pathway-related cytokines, and advanced stages characterized by monocyte chemoattractants associated with chronic inflammation. Currently, the potential of pharmacologic interventions in RRD and PVR remains limited. In contrast, proteomics offers critical insights into molecular mechanisms, identifying potential biomarkers and therapeutic pathways. The adoption of single-molecule and top-down proteomics, along with the integration of advanced technologies with artificial intelligence and bioinformatics, holds promise for accelerating progress toward precision medicine. These developments represent a promising avenue for future research and clinical application.
Keywords: proteomics, mass spectrometry, vitreous, rhegmatogenous retinal detachment, proliferative vitreoretinopathy
Received: December 31, 2024; Revised: April 9, 2025; Accepted: April 28, 2025; Prepublished online: May 13, 2025
References
- . Nemet A, Moshiri A, Yiu G, Loewenstein A, Moisseiev E. A Review of Innovations in Rhegmatogenous Retinal Detachment Surgical Techniques. J Ophthalmol 2017;2017:1-5.
Go to original source...
Go to PubMed...
- . R. Sparrow J, Hicks D, P. Hamel C. The Retinal Pigment Epithelium in Health and Disease. Curr Mol Med 2010;10(9):802-23.
Go to original source...
Go to PubMed...
- . Lo ACY, Woo TTY, Wong RLM, Wong D. Apoptosis and Other Cell Death Mechanisms after Retinal Detachment: Implications for Photoreceptor Rescue. Ophthalmologica 2011;226(Suppl. 1):10-17.
Go to original source...
Go to PubMed...
- . Dai Y, Dai C, Sun T. Inflammatory mediators of proliferative vitreoretinopathy: hypothesis and review. Int Ophthalmol 2020;40(6):1587-601.
Go to original source...
Go to PubMed...
- . Sene A, Apte RS. Inflammation-Induced Photoreceptor Cell Death. Adv Exp Med Biol 2018;1074:203-8.
Go to original source...
Go to PubMed...
- . Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L, Delgado-Tirado S. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical consequences. Prog Retin Eye Res 2016;51:125-55.
Go to original source...
Go to PubMed...
- . Murthy KR, Goel R, Subbannayya Y, Jacob HK, Murthy PR, Manda SS, Patil AH, Sharma R, Sahasrabuddhe NA, Parashar A, Nair BG, Krishna V, Prasad TK, Gowda H, Pandey A. Proteomic analysis of human vitreous humor. Clin Proteomics 2014;11(1):29.
Go to original source...
Go to PubMed...
- . Dos Santos FM, Ciordia S, Mesquita J, de Sousa JPC, Paradela A, Tomaz CT, Passarinha LAP. Vitreous humor proteome: unraveling the molecular mechanisms underlying proliferative and neovascular vitreoretinal diseases. Cellular and Molecular Life Sciences 2023;80(1):22.
Go to original source...
Go to PubMed...
- . Wu CW, Sauter JL, Johnson PK, Chen C Di, Olsen TW. Identification and localization of major soluble vitreous proteins in human ocular tissue. Am J Ophthalmol 2004;137(4):655-61.
Go to original source...
Go to PubMed...
- . Yamane K, Minamoto A, Yamashita H, Takamura H, Miyamoto-Myoken Y, Yoshizato K, Nabetani T, Tsugita A, Mishima HK. Proteome analysis of human vitreous proteins. Mol Cell Proteomics 2003;2(11):1177-87.
Go to original source...
Go to PubMed...
- . Hurley JB. Retina Metabolism and Metabolism in the Pigmented Epithelium: A Busy Intersection. Annu Rev Vis Sci 2021;7:665-92.
Go to original source...
Go to PubMed...
- . Newsome DA, Chader GJ, Wiggert B, Yeo JH, Welch RB, Blacharski PA, Charles ST. Interphotoreceptor Retinoid-Binding Protein Levels in Subretinal Fluid from Rhegmatogenous Retinal Detachment and Retinopathy of Prematurity. Arch Ophthal 1988;106(1):106-10.
Go to original source...
Go to PubMed...
- . Santos FM, Gaspar LM, Ciordia S, Rocha AS, Castro E Sousa JP, Paradela A, Passarinha LA, Tomaz CT. ITRAQ quantitative proteomic analysis of vitreous from patients with retinal detachment. Int J Mol Sci 2018;19(4):1157. doi: 10.3390/ijms19041157
Go to original source...
Go to PubMed...
- . Nakazawa T, Hisatomi T, Nakazawa C, Noda K, Maruyama K, She H, Matsubara A, Miyahara S, Nakao S, Yin Y, Benowitz L, Hafezi-Moghadam A, Miller JW. Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis. Proc Natl Acad Sci U S A 2007;104(7):2425-30.
Go to original source...
Go to PubMed...
- . Nakazawa T, Takeda M, Lewis GP, Cho KS, Jiao J, Wilhelmsson U, Fisher SK, Pekny M, Chen DF, Miller JW. Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Invest Ophthalmol Vis Sci 2007;48(6):2760-8.
Go to original source...
Go to PubMed...
- . Narayan DS, Chidlow G, Wood JPM, Casson RJ. Glucose metabolism in mammalian photoreceptor inner and outer segments. Clin Exp Ophthalmol 2017;45(7):730-41.
Go to original source...
Go to PubMed...
- . Mandal N, Lewis GP, Fisher SK, Heegaard S, Prause JU, la Cour M, Vorum H, Honoré B. Protein changes in the retina following experimental retinal detachment in rabbits. Mol Vis 2011;17:2634-48.
- . Kusakabe T, Motoki K, Hori K. Mode of interactions of human aldolase isozymes with cytoskeletons. Arch Biochem Biophys 1997;344(1):184-93.
Go to original source...
Go to PubMed...
- . Öhman T, Gawriyski L, Miettinen S, Varjosalo M, Loukovaara S. Molecular pathogenesis of rhegmatogenous retinal detachment. Sci Rep 2021;11(1):966. doi: 10.1038/s41598-020-80005-w
Go to original source...
Go to PubMed...
- . Yu J, Liu F, Cui SJ, Liu Y, Song ZY, Cao H, Chen FE, Wang WJ, Sun T, Wang F. Vitreous proteomic analysis of proliferative vitreoretinopathy. Proteomics 2008;8(17):3667-78.
Go to original source...
Go to PubMed...
- . Li M, Li H, Jiang P, Liu X, Xu D, Wang F. Investigating the pathological processes of rhegmatogenous retinal detachment and proliferative vitreoretinopathy with metabolomics analysis. Mol Biosyst 2014;10(5):1055-62.
Go to original source...
Go to PubMed...
- . Wu Z, Ding N, Yu M, Wang K, Luo S, Zou W, Zhou Y, Yan B, Jiang Q. Identification of potential biomarkers for rhegmatogenous retinal detachment associated with choroidal detachment by vitreous iTRAQ-based proteomic profiling. Int J Mol Sci 2016;17(12):2052. doi: 10.3390/ijms17122052
Go to original source...
Go to PubMed...
- . Mandal N, Lewis GP, Fisher SK, Heegaard S, Prause JU, la Cour M, Vorum H, Honoré B. Proteomic Analysis of the Vitreous following Experimental Retinal Detachment in Rabbits. J Ophthalmol 2015; 2015:583040.
Go to original source...
Go to PubMed...
- . Takano S, Ishiwata S, Nakazawa M, Mizugaki M, Tamai M. Determination of ascorbic acid in human vitreous humor by high-performance liquid chromatography with UV detection. Curr Eye Res 1997;16(6):589-94.
Go to original source...
Go to PubMed...
- . Rao NA, Saraswathy S, Pararajasegaram G, Bhat SP. Small heat shock protein αA-crystallin prevents photoreceptor degeneration in experimental autoimmune uveitis. PLoS One 2012;7(3):e33582.
Go to original source...
Go to PubMed...
- . Huo QY, Zhu MC, Yang WC, Wang YP, Chen S. 4D label-free proteomic analysis of vitreous from patients with rhegmatogenous retinal detachment. Int J Ophthalmol 2023;16(4):523-31.
Go to original source...
Go to PubMed...
- . Kayama M, Nakazawa T, Thanos A, Morizane Y, Murakami Y, Theodoropoulou S, Abe T, Vavvas D, Miller JW. Heat shock protein 70 (HSP70) is critical for the photoreceptor stress response after retinal detachment via modulating anti-apoptotic Akt kinase. Am J Pathol 2011;178(3):1080-91.
Go to original source...
Go to PubMed...
- . Luo S, Chen Y, Yang L, Gong X, Wu Z. The Complement System in Retinal Detachment with Choroidal Detachment. Curr Eye Res 2022;47(5):809-12.
Go to original source...
Go to PubMed...
- . Yu J, Peng R, Chen H, Cui C, Ba J. Elucidation of the pathogenic mechanism of rhegmatogenous retinal detachment with proliferative vitreoretinopathy by proteomic analysis. Invest Ophthalmol Vis Sci 2012;53(13):8146-53.
Go to original source...
Go to PubMed...
- . Symeonidis C, Diza E, Papakonstantinou E, Souliou E, Dimitrakos SA, Karakiulakis G. Correlation of the extent and duration of rhegmatogenous retinal detachment with the expression of matrix metalloproteinases in the vitreous. Retina 2007;27(9):1279-85.
Go to original source...
Go to PubMed...
- . Roybal CN, Velez G, Toral MA, Tsang SH, Bassuk AG, Mahajan VB. Personalized Proteomics in Proliferative Vitreoretinopathy Implicate Hematopoietic Cell Recruitment and mTOR as a Therapeutic Target. Am J Ophthalmol 2018;186:152-63.
Go to original source...
Go to PubMed...
- . Nair GKG, Pollalis D, Wren JD, Georgescu C, Sjoelund V, Lee SY. Proteomic Insight into the Role of Exosomes in Proliferative Vitreoretinopathy Development. J Clin Med 2022;11(10):2716. doi: 10.3390/jcm11102716
Go to original source...
Go to PubMed...
- . Cronstein BN, Kimmel SC, Levin RI, Martiniuk F, Weissmann G. A mechanism for the antiinflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc Natl Acad Sci U S A 1992;89(21):9991-5. doi: 10.1073/pnas.89.21.9991
Go to original source...
Go to PubMed...
- . Zhang Y, Xi Y, Yang C, Gong W, Wang C, Wu L, Wang D. Short-Chain Fatty Acids Attenuate 5-Fluorouracil-Induced THP-1 Cell Inflammation through Inhibiting NF-κB/NLRP3 Signaling via Glycerolphospholipid and Sphingolipid Metabolism. Molecules 2023;28(2):494.
Go to original source...
Go to PubMed...
- . Asaria RH, Kon CH, Bunce C, Charteris DG, Wong D, Khaw PT, Aylward GW. Adjuvant 5-fluorouracil and heparin prevents proliferative vitreoretinopathy. Ophthalmology 2001;108(7):1179-83.
Go to original source...
Go to PubMed...
- . Banerjee PJ, Quartilho A, Bunce C, Xing W, Zvobgo TM, Harris N, Charteris DG. Slow-Release Dexamethasone in Proliferative Vitreoretinopathy: A Prospective, Randomized Controlled Clinical Trial. Ophthalmology 2017;124(6):757-67.
Go to original source...
Go to PubMed...
- . Li M, Li H, Jiang P, Liu X, Xu D, Wang F. Investigating the pathological processes of rhegmatogenous retinal detachment and proliferative vitreoretinopathy with metabolomics analysis. Mol Biosyst 2014;10(5):1055-62.
Go to original source...
Go to PubMed...
- . Heffer AM, Wang V, Libby RT, Feldon SE, Woeller CF, Kuriyan AE. Salinomycin inhibits proliferative vitreoretinopathy formation in a mouse model. PLoS One 2020;15(12):e0243626.
Go to original source...
Go to PubMed...
- . Erickson PA, Fisher SK, Anderson DH, Stern WA, Borgula GA. Retinal detachment in the cat: the outer nuclear and outer plexiform layers. Invest Ophthalmol Vis Sci 1983;24(7):927-42.
- . Daruich A, Matet A, Behar-Cohen F. Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retin Eye Res 2015;48:82-118.
Go to original source...
Go to PubMed...
- . Kowalczuk L, Matet A, Dor M, Bararpour N, Daruich A, Dirani A, Behar-Cohen F, Thomas A, Turck N. Proteome and metabolome of subretinal fluid in central serous chorioretinopathy and rhegmatogenous retinal detachment: a pilot case study. Transl Vis Sci Technol 2018;7(1):3.
Go to original source...
Go to PubMed...
- . Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Molecular and Cellular Proteomics 2012;11(6):O111.016717. doi: 10.1074/mcp.O111.016717
Go to original source...
Go to PubMed...
- . Cui M, Cheng C, Zhang L. High-throughput proteomics: a methodological mini-review. Laboratory Investigation 2022;102(11):1170-81.
Go to original source...
Go to PubMed...
- . Cupp-Sutton KA, Wu S. High-throughput quantitative top-down proteomics. Mol Omics 2020;16(2):91-9.
Go to original source...
Go to PubMed...
- . Xie EF, Xie B, Nadeem U, D'Souza M, Reem G, Sulakhe D, Skondra D. Using Advanced Bioinformatics Tools to Identify Novel Therapeutic Candidates for Proliferative Vitreoretinopathy. Transl Vis Sci Technol 2023;12(5):19. doi: 10.1167/tvst.12.5.19
Go to original source...
Go to PubMed...
- . Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, ®ídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596(7873):583-9.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.