Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. X:X | DOI: 10.5507/bp.2025.008

Transcriptomic analysis reveals distinct molecular signatures and regulatory networks of osteoarthritic chondrocytes versus mesenchymal stem cells during chondrogenesis

Tsung-Yu Lin1, 2, 3, Viraj Krishna Mishra4, Rajni Dubey5, Thakur Prasad Chaturvedi6, Shankar Narayan A7, Hsu-Wei Fang3, Lung-Wen Tsai8, 9, 10, Navneet Kumar Dubey11, 12
1 Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei City 104, Taiwan
2 Mackay Junior College of Medicine, Nursing, and Management, New Taipei City 252, Taiwan
3 Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
4 BioSource Tech, Ambala 133101, Haryana, India
5 Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
6 Division of Orthodontics and Dentofacial Orthopaedics, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
7 Center of Excellence, Akhand Jyoti Eye Hospital, Mastichak, Patna, Bihar 841219, India
8 Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
9 Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
10 Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 11031, Taiwan
11 Victory Biotechnology Co., Ltd., Taipei 114757, Taiwan
12 Executive Programme in Healthcare Management, Indian Institute of Management Lucknow 226013, India

Background: Recent regenerative studies imply conflicting results on knee osteoarthritic (OA) chondrocytes and mesenchymal stem cells (MSC)-mediated cartilage constructs in terms of compressive properties and tensile strength. This could be attributed to different gene expression patterns between MSC and OA chondrocytes during chondrogenic differentiation. Therefore, we analyzed differentially expressed genes (DEGs) between OA and MSC-derived chondrocytes using bioinformatics tools.

Methods: We downloaded and analyzed the GSE19664 dataset from the Gene Expression Omnibus to identify DEGs. DAVID was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, while a protein-protein interaction network of DEGs was constructed through the Search Tool for the Retrieval of Interacting Genes (STRING) and identified hub genes by CytoHubba.

Results: A total of 43 DEGs identified (15 downregulated and 28 upregulated) were found to be deregulated between OA and MSC-derived chondrocytes. KEGG analysis revealed the enrichment of complement and coagulation cascades and other pathways among the studied chondrocytes. The pathway enrichment identified top KEGG, gene ontology biological process, molecular function, and cellular component. The hub networks identified the top 5 hub genes involved in chondrogenesis, including CLU, PLAT, CP, TIMP3, and SERPINA1.

Conclusions: Our results identified significant genes involved in chondrogenesis. These findings provide new avenues for exploring the genetic mechanism underlying cartilage synthesis and novel targets for preclinical intervention and clinical treatment.

Keywords: osteoarthritis, chondrocytes, mesenchymal stem cells, differentially expressed genes (DEGs), protein-protein interaction (PPI), hub genes, gene ontology (GO)

Received: May 22, 2024; Revised: January 9, 2025; Accepted: March 19, 2025; Prepublished online: April 17, 2025 

Download citation

References

  1. . Zhang W, Ouyang H, Dass CR, Xu J. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res 2016;4:15040. doi: 10.1038/boneres.2015.40 Go to original source... Go to PubMed...
  2. . Li MH, Xiao R, Li JB, Zhu Q. Regenerative approaches for cartilage repair in the treatment of osteoarthritis. Osteoarthritis Cartilage 2017;25(10):1577-87. doi: 10.1016/j.joca.2017.07.004 Go to original source... Go to PubMed...
  3. . Pap T, Korb-Pap A. Cartilage damage in osteoarthritis and rheumatoid arthritis-two unequal siblings. Nat Rev Rheumatol 2015;11(10):606-15. doi: 10.1038/nrrheum.2015.95 Go to original source... Go to PubMed...
  4. . Felson DT. Clinical practice. Osteoarthritis of the knee. N Engl J Med 2006;354(8):841-8. doi: 10.1056/NEJMcp051726. Erratum in: N Engl J Med 2006;354(23):2520. Go to original source... Go to PubMed...
  5. . Szponder T, Latalski M, Danielewicz A, Krać K, Kozera A, Drzewiecka B, Nguyen Ngoc D, Dobko D, Wessely-Szponder J. Osteoarthritis: Pathogenesis, Animal Models, and New Regenerative Therapies. J Clin Med 2022;12(1):5. doi: 10.3390/jcm12010005 Go to original source... Go to PubMed...
  6. . m GI. Current status of regenerative medicine in osteoarthritis. Bone Joint Res 2021;10(2):134-6. doi: 10.1302/2046-3758.102.BJR-2020-0517.R1 Go to original source... Go to PubMed...
  7. . Ip HL, Nath DK, Sawleh SH, Kabir MH, Jahan N. Regenerative Medicine for Knee Osteoarthritis - The Efficacy and Safety of Intra-Articular Platelet-Rich Plasma and Mesenchymal Stem Cells Injections: A Literature Review. Cureus 2020;12:e10575. 2020/10/27. doi: 10.7759/cureus.10575 Go to original source... Go to PubMed...
  8. . Lu L, Dai C, Zhang Z, Du H, Li S, Ye P, Fu Q, Zhang L, Wu X, Dong Y, Song Y, Zhao D, Pang Y, Bao C. Treatment of knee osteoarthritis with intra-articular injection of autologous adipose-derived mesenchymal progenitor cells: a prospective, randomized, double-blind, active-controlled, phase IIb clinical trial. Stem Cell Res Ther 2019;10(1):143. doi: 10.1186/s13287-019-1248-3 Go to original source... Go to PubMed...
  9. . Bernstein P, Sticht C, Jacobi A, Liebers C, Manthey S, Stiehler M. Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation. Osteoarthritis Cartilage 2010;18(12):1596-607. doi: 10.1016/j.joca.2010.09.007 Go to original source... Go to PubMed...
  10. . Nesic D, Whiteside R, Brittberg M, Wendt D, Martin I, Mainil-Varlet P. Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev 2006;58(2):300-22. doi: 10.1016/j.addr.2006.01.012 Go to original source... Go to PubMed...
  11. . Wei P, Bao R. Intra-Articular Mesenchymal Stem Cell Injection for Knee Osteoarthritis: Mechanisms and Clinical Evidence. Int J Mol Sci 2022;24(1):59. doi: 10.3390/ijms24010059 Go to original source... Go to PubMed...
  12. . Zeng N, Yan ZP, Chen XY, Ni GX. Infrapatellar Fat Pad and Knee Osteoarthritis. Aging Dis 2020;11(5):1317-28. doi: 10.14336/AD.2019.1116 Go to original source... Go to PubMed...
  13. . Agar G, Blumenstein S, Bar-Ziv Y, Kardosh R, Schrift-Tzadok M, Gal-Levy R, Fischler T, Goldschmid R, Yayon A. The Chondrogenic Potential of Mesenchymal Cells and Chondrocytes from Osteoarthritic Subjects: A Comparative Analysis. Cartilage 2011;2(1):40-9. doi: 10.1177/1947603510380899 Go to original source... Go to PubMed...
  14. . Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 2007;213(2):341-7. doi: 10.1002/jcp.21200 Go to original source... Go to PubMed...
  15. . Karlsson C, Brantsing C, Svensson T, Brisby H, Asp J, Tallheden T, Lindahl A. Differentiation of human mesenchymal stem cells and articular chondrocytes: analysis of chondrogenic potential and expression pattern of differentiation-related transcription factors. J Orthop Res 2007;25(2):152-63. doi: 10.1002/jor.20287 Go to original source... Go to PubMed...
  16. . Mauck R, Yuan X, Tuan RS. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage 2006;14:179-89. Go to original source... Go to PubMed...
  17. . Erickson IE, Huang AH, Chung C, Li RT, Burdick JA, Mauck RL. Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Eng Part A 2009;15(5):1041-52. doi: 10.1089/ten.tea.2008.0099 Go to original source... Go to PubMed...
  18. . Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003;4(5):P3. Go to original source...
  19. . Huang B, Li P, Chen M, Peng L, Luo X, Tian G, Wang H, Wu L, Tian Q, Li H, Yang Y, Jiang S, Yang Z, Zha K, Sui X, Liu S, Guo Q. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications. J Nanobiotechnology 2022;20(1):25. doi: 10.1186/s12951-021-01230-7 Go to original source... Go to PubMed...
  20. . Wan J, Zhang G, Li X, Qiu X, Ouyang J, Dai J, Min S. Matrix Metalloproteinase 3: A Promoting and Destabilizing Factor in the Pathogenesis of Disease and Cell Differentiation. Front Physiol 2021;12:663978. doi: 10.3389/fphys.2021.663978 Go to original source... Go to PubMed...
  21. . Fernandes AM, Herlofsen SR, Karlsen TA, Küchler AM, Fløisand Y, Brinchmann JE. Similar properties of chondrocytes from osteoarthritis joints and mesenchymal stem cells from healthy donors for tissue engineering of articular cartilage. PLoS One 2013;8(5):e62994. doi: 10.1371/journal.pone.0062994 Go to original source... Go to PubMed...
  22. . Huh YH, Ryu JH, Shin S, Lee DU, Yang S, Oh KS, Chun CH, Choi JK, Song WK, Chun JS. Esophageal cancer related gene 4 (ECRG4) is a marker of articular chondrocyte differentiation and cartilage destruction. Gene 2009;448(1):7-15. doi: 10.1016/j.gene.2009.08.015 Go to original source... Go to PubMed...
  23. . Li C, Zheng Z. Identification of Novel Targets of Knee Osteoarthritis Shared by Cartilage and Synovial Tissue. Int J Mol Sci 2020;21(17):6033. doi: 10.3390/ijms21176033 Go to original source... Go to PubMed...
  24. . Recklies A, Bernier S, Camper L. P142 Toll-like receptor activtion regulates expression of the chitinase-like proteins in articular chondrocytes. Osteoarthritis and Cartilage 2006;14(Suppl B): S87. doi: 10.1016/S1063-4584(07)60594-9 Go to original source...
  25. . Jankowski M, Kaczmarek M, W±siatycz G, Konwerska A, Dompe C, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Expression Profile of New Gene Markers Involved in Differentiation of Canine Adipose-Derived Stem Cells into Chondrocytes. Genes (Basel) 2022;13(9):1664. doi: 10.3390/genes13091664 Go to original source... Go to PubMed...
  26. . ecklies AD, Ling H, White C, Bernier SM. Inflammatory cytokines induce production of CHI3L1 by articular chondrocytes. J Biol Chem 2005;280(50):41213-21. doi: 10.1074/jbc.M510146200 Go to original source... Go to PubMed...
  27. . Di Rosa M, Szychlinska MA, Tibullo D, Malaguarnera L, Musumeci G. Expression of CHI3L1 and CHIT1 in osteoarthritic rat cartilage model. A morphological study. Eur J Histochem 2014;58(3):2423. doi: 10.4081/ejh.2014.2423 Go to original source... Go to PubMed...
  28. . Zhou Z, Yao B, Zhao D. Runx3 regulates chondrocyte phenotype by controlling multiple genes involved in chondrocyte proliferation and differentiation. Mol Biol Rep 2020;47(8):5773-92. doi: 10.1007/s11033-020-05646-6 Go to original source... Go to PubMed...
  29. . White MJ, Roife D, Gomer RH. Galectin-3 Binding Protein Secreted by Breast Cancer Cells Inhibits Monocyte-Derived Fibrocyte Differentiation. J Immunol 2015;195:1858-67. doi: 10.4049/jimmunol.1500365 Go to original source... Go to PubMed...
  30. . Ohshima S, Kuchen S, Seemayer CA, Kyburz D, Hirt A, Klinzing S, Michel BA, Gay RE, Liu FT, Gay S, Neidhart M. Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis Rheum 2003;48(10):2788-95. doi: 10.1002/art.11287 Go to original source... Go to PubMed...
  31. . DeRoo EP, Wrobleski SK, Shea EM, Al-Khalil RK, Hawley AE, Henke PK, Myers DD Jr, Wakefield TW, Diaz JA. The role of galectin-3 and galectin-3-binding protein in venous thrombosis. Blood 2015;125(11):1813-21. doi: 10.1182/blood-2014-04-569939 Go to original source... Go to PubMed...
  32. . Udomsinprasert W, Ungsudechachai T, Wunthong S, Yuttanarad S, Jittikoon J, Honsawek S. Effect of galectin-3 on synovial inflammation in knee osteoarthritis via stimulating phosphatidylinositol-3-kinase/Akt pathway. Int Immunopharmacol 2023;122:110673. doi: 10.1016/j.intimp.2023.110673 Go to original source... Go to PubMed...
  33. . Wei R, Zhang L, Hu W, Wu J, Zhang W. CSTA plays a role in osteoclast formation and bone resorption by mediating the DAP12/TREM2 pathway. Biochem Biophys Res Commun 2022;627:12-20. doi: 10.1016/j.bbrc.2022.08.033 Go to original source... Go to PubMed...
  34. . Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-beta/bone morphogenic protein signalling. Arthritis Res Ther 2007;9(5):R100. doi: 10.1186/ar2301 Go to original source... Go to PubMed...
  35. . Wang M, Liu C, Zhang Y, Hao Y, Zhang X, Zhang YM. Protein interaction and microRNA network analysis in osteoarthritis meniscal cells. Genet Mol Res 2013;12(1):738-46. doi: 10.4238/2013 Go to original source...
  36. . Gobezie R, Kho A, Krastins B, Sarracino DA, Thornhill TS, Chase M, Millett PJ, Lee DM. High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis. Arthritis Res Ther 2007;9(2):R36. doi: 10.1186/ar2172 Go to original source... Go to PubMed...
  37. . Uchimura T, Foote AT, Smith EL, Matzkin EG, Zeng L. Insulin-Like Growth Factor II (IGF-II) Inhibits IL-1β-Induced Cartilage Matrix Loss and Promotes Cartilage Integrity in Experimental Osteoarthritis. J Cell Biochem 2015;116(12):2858-69. doi: 10.1002/jcb.25232 Go to original source... Go to PubMed...
  38. . Tanaka N, Tsuno H, Ohashi S, Iwasawa M, Furukawa H, Kato T, Fukui N. The attenuation of insulin-like growth factor signaling may be responsible for relative reduction in matrix synthesis in degenerated areas of osteoarthritic cartilage. BMC Musculoskelet Disord 2021;22(1):231. doi: 10.1186/s12891-021-04096-w Go to original source... Go to PubMed...
  39. . Uchimura T, Hollander JM, Nakamura DS, Liu Z, Rosen CJ, Georgakoudi I, Zeng L. An essential role for IGF2 in cartilage development and glucose metabolism during postnatal long bone growth. Development 2017;144(19):3533-46. doi: 10.1242/dev.155598 Go to original source... Go to PubMed...
  40. . Singh S, Jindal D, Khanna R. Can serum MMP-3 diagnose early knee osteoarthritis? J Orthopaedics 2023;38:42-6. doi: 10.1016/j.jor.2023.02.014 Go to original source... Go to PubMed...
  41. . Fandridis E, Apergis G, Korres DS, Nikolopoulos K, Zoubos AB, Papassideri I, Trougakos IP. Increased expression levels of apolipoprotein J/clusterin during primary osteoarthritis. In Vivo 2011;25(5):745-9.
  42. . Kalvaityte U, Matta C, Bernotiene E, Pushparaj PN, Kiapour AM, Mobasheri A. Exploring the translational potential of clusterin as a biomarker of early osteoarthritis. J Orthop Translat 2021;32:77-84. doi: 10.1016/j.jot.2021.10.001 Go to original source... Go to PubMed...
  43. . Ungsudechachai T, Honsawek S, Jittikoon J, Udomsinprasert W. Clusterin Is Associated with Systemic and Synovial Inflammation in Knee Osteoarthritis. Cartilage 2021;13(1_suppl):1557S-1565S. doi: 10.1177/1947603520958149 Go to original source... Go to PubMed...
  44. . Rodríguez-Rivera C, Garcia MM, Molina-Álvarez M, González-Martín C, Goicoechea C. Clusterin: Always protecting. Synthesis, function and potential issues. Biomed Pharmacother 2021;134:111174. doi: 10.1016/j.biopha.2020.111174 Go to original source... Go to PubMed...
  45. . Kovács P, Pushparaj PN, Takács R, Mobasheri A, Matta C. The clusterin connectome: Emerging players in chondrocyte biology and putative exploratory biomarkers of osteoarthritis. Front Immunol 2023;14:1103097. doi: 10.3389/fimmu.2023.1103097 Go to original source... Go to PubMed...
  46. . Tarquini C, Pucci S, Scioli MG, Doldo E, Agostinelli S, D'Amico F, Bielli A, Ferlosio A, Caredda E, Tarantino U, Orlandi A. Clusterin exerts a cytoprotective and antioxidant effect in human osteoarthritic cartilage. Aging (Albany NY) 2020;12(11):10129-46. doi: 10.18632/aging.103310 Go to original source... Go to PubMed...
  47. . Devauchelle V, Essabbani A, De Pinieux G, Germain S, Tourneur L, Mistou S, Margottin-Goguet F, Anract P, Migaud H, Le Nen D, Lequerré T, Saraux A, Dougados M, Breban M, Fournier C, Chiocchia G. Characterization and functional consequences of underexpression of clusterin in rheumatoid arthritis. J Immunol 2006;177(9):6471-9. doi: 10.4049/jimmunol.177.9.6471 Go to original source... Go to PubMed...
  48. . Kiapour AM, Sieker JT, Proffen BL, Lam TT, Fleming BC, Murray MM. Synovial fluid proteome changes in ACL injury-induced posttraumatic osteoarthritis: Proteomics analysis of porcine knee synovial fluid. PLoS One 2019;14(3):e0212662. doi: 10.1371/journal.pone.0212662 Go to original source... Go to PubMed...
  49. . Raghu H, Jone A, Cruz C, Rewerts CL, Frederick MD, Thornton S, Degen JL, Flick MJ. Plasminogen is a joint-specific positive or negative determinant of arthritis pathogenesis in mice. Arthritis Rheumatol 2014;66(6):1504-16. doi: 10.1002/art.38402 Go to original source... Go to PubMed...
  50. . Moritake A, Kawao N, Okada K, Tatsumi K, Ishida M, Okumoto K, Matsuo O, Akagi M, Kaji H. Plasminogen activator inhibitor-1 deficiency enhances subchondral osteopenia after induction of osteoarthritis in mice. BMC Musculoskelet Disord 2017;18(1):392. doi: 10.1186/s12891-017-1752-5 Go to original source... Go to PubMed...
  51. . Li J, Ny A, Leonardsson G, Nandakumar KS, Holmdahl R, Ny T. The plasminogen activator/plasmin system is essential for development of the joint inflammatory phase of collagen type II-induced arthritis. Am J Pathol 2005;166(3):783-92. doi: 10.1016/S0002-9440(10)62299-7 Go to original source... Go to PubMed...
  52. . Zhu G, Tang Y, Liang X, Zheng M, Yang J, Zhou H, Li L, Qin T. Role of hypoxia-inducible factor-1 alpha in the regulation of plasminogen activator activity in rat knee joint chondrocytes. Osteoarthritis Cartilage 2009;17(11):1494-502. doi: 10.1016/j.joca.2009.05.005 Go to original source... Go to PubMed...
  53. . Sulastri D, Arnadi A, Afriwardi A, Desmawati D, Amir A, Irawati N, Yanis A, Yusrawati Y. Risk factor of elevated matrix metalloproteinase-3 gene expression in synovial fluid in knee osteoarthritis women. PLoS One 2023;18(3):e0283831. doi: 10.1371/journal.pone.0283831 Go to original source... Go to PubMed...
  54. . Wilkinson DJ, Arques MDC, Huesa C, Rowan AD. Serine proteinases in the turnover of the cartilage extracellular matrix in the joint: implications for therapeutics. Br J Pharmacol 2019;176(1):38-51. doi: 10.1111/bph.14173 Go to original source... Go to PubMed...
  55. . Wilkinson DJ. Serpins in cartilage and osteoarthritis: what do we know? Biochem Soc Trans 202;49(2):1013-26. doi: 10.1042/BST20201231 Go to original source... Go to PubMed...
  56. . Boeuf S, Steck E, Pelttari K, Hennig T, Buneb A, Benz K, Witte D, Sültmann H, Poustka A, Richter W. Subtractive gene expression profiling of articular cartilage and mesenchymal stem cells: serpins as cartilage-relevant differentiation markers. Osteoarthritis Cartilage 2008;16(1):48-60. doi: 10.1016/j.joca.2007.05.008 Go to original source... Go to PubMed...
  57. . Wanner J, Subbaiah R, Skomorovska-Prokvolit Y, Shishani Y, Boilard E, Mohan S, Gillespie R, Miyagi M, Gobezie R. Proteomic profiling and functional characterization of early and late shoulder osteoarthritis. Arthritis Res Ther 2013;15(6):R180. doi: 10.1186/ar4369 Go to original source... Go to PubMed...
  58. . Lin W, Xu L, Li G. Molecular Insights Into Lysyl Oxidases in Cartilage Regeneration and Rejuvenation. Front Bioeng Biotechnol 2020;8:359. doi: 10.3389/fbioe.2020.00359 Erratum in: Front Bioeng Biotechnol 2020;8:598323. doi: 10.3389/fbioe.2020.598323 Go to original source... Go to PubMed...
  59. . Tong Z, Liu Y, Chen B, Yan L, Hao D. Association between MMP3 and TIMP3 polymorphisms and risk of osteoarthritis. Oncotarget 2017;8(48):83563-9. doi: 10.18632/oncotarget.18745 Go to original source... Go to PubMed...
  60. . Troeberg L. Engineering TIMP-3 for OA therapy. Osteoarthritis Cartilage 2017;25:S2. doi: 10.1016/j.joca.2017.02.007 Go to original source...
  61. . Suzuki H, Nezaki Y, Kuno E, Sugiyama I, Mizutani A, Tsukagoshi N. Functional roles of the tissue inhibitor of metalloproteinase 3 (TIMP-3) during ascorbate-induced differentiation of osteoblastic MC3T3-E1 cells. Biosci Biotechnol Biochem 2003;67(8):1737-43. doi: 10.1271/bbb.67.1737 Go to original source... Go to PubMed...
  62. . Morris KJ, Cs-Szabo G, Cole AA. Characterization of TIMP-3 in human articular talar cartilage. Connect Tissue Res 2010;51(6):478-90. doi: 10.3109/03008201003686958 Go to original source... Go to PubMed...
  63. . Chaudhari NY, Sontakke A. Markers of inflammation in rheumatoid arthritis and Osteoarthritis. Int J Med Health Sci 2020; 9(2):25-8.
  64. . Scotece M, Koskinen-Kolasa A, Pemmari A, Leppänen T, Hämäläinen M, Moilanen T, Moilanen E, Vuolteenaho K. Novel adipokine associated with OA: retinol binding protein 4 (RBP4) is produced by cartilage and is correlated with MMPs in osteoarthritis patients. Inflamm Res 2020;69(4):415-21. doi: 10.1007/s00011-020-01326-0 Go to original source... Go to PubMed...
  65. . Pazos-Pérez A, Piñeiro-Ramil M, Franco-Trepat E, Alonso-Pérez A, Guillán-Fresco M, Crespo-Golmar A, López-Fagúndez M, Aranda JC, Bravo SB, Jorge-Mora A, Gómez R. The Hepatokine RBP4 Links Metabolic Diseases to Articular Inflammation. Antioxidants (Basel) 2024;13(1):124. doi: 10.3390/antiox13010124 Go to original source... Go to PubMed...
  66. . Shepherd C, Zhu D, Skelton AJ, Combe J, Threadgold H, Zhu L, Vincent TL, Stuart P, Reynard LN, Loughlin J. Functional Characterization of the Osteoarthritis Genetic Risk Residing at ALDH1A2 Identifies rs12915901 as a Key Target Variant. Arthritis Rheumatol 2018;70(10):1577-87. doi: 10.1002/art.40545 Go to original source... Go to PubMed...
  67. . im SK, Kwak SG, Choe JY. Decline of Lung Function in Knee and Spine Osteoarthritis in the Korean Population: Cross-Sectional Analysis of Data from the Korea National Health and Nutrition Examination Survey. Healthcare (Basel) 2022;10(4):736. doi: 10.3390/healthcare10040736 Go to original source... Go to PubMed...
  68. . Koo HK, Song P, Lee JH. Novel association between asthma and osteoarthritis: a nationwide health and nutrition examination survey. BMC Pulm Med 2021;21(1):59. doi: 10.1186/s12890-021-01425-6 Go to original source... Go to PubMed...
  69. . Wshah A, Guilcher SJ, Goldstein R, Brooks D. Prevalence of osteoarthritis in individuals with COPD: a systematic review. Int J Chron Obstruct Pulmon Dis 2018;13:1207-16. doi: 10.2147/COPD.S158614 Go to original source... Go to PubMed...
  70. . Park HJ, Leem AY, Lee SH, Song JH, Park MS, Kim YS, Kim SK, Chang J, Chung KS. Comorbidities in obstructive lung disease in Korea: data from the fourth and fifth Korean National Health and Nutrition Examination Survey. Int J Chron Obstruct Pulmon Dis 2015;10:1571-82. doi: 10.2147/COPD.S85767 Go to original source... Go to PubMed...
  71. . Wang Q, Rozelle AL, Lepus CM, Scanzello CR, Song JJ, Larsen DM, Crish JF, Bebek G, Ritter SY, Lindstrom TM, Hwang I, Wong HH, Punzi L, Encarnacion A, Shamloo M, Goodman SB, Wyss-Coray T, Goldring SR, Banda NK, Thurman JM, Gobezie R, Crow MK, Holers VM, Lee DM, Robinson WH. Identification of a central role for complement in osteoarthritis. Nat Med 2011;17(12):1674-9. doi: 10.1038/nm.2543 Go to original source... Go to PubMed...
  72. . Silawal S, Triebel J, Bertsch T, Schulze-Tanzil G. Osteoarthritis and the Complement Cascade. Clin Med Insights Arthritis Musculoskelet Disord 2018;11:1179544117751430. doi: 10.1177/1179544117751430 Go to original source... Go to PubMed...
  73. . Struglics A, Okroj M, Swärd P, Frobell R, Saxne T, Lohmander LS, Blom AM. The complement system is activated in synovial fluid from subjects with knee injury and from patients with osteoarthritis. Arthritis Res Ther 2016;18(1):223. doi: 10.1186/s13075-016-1123-x Go to original source... Go to PubMed...
  74. . Rosas S, Kwok A, Moore J, Shi L, Smith TL, Tallant EA, Kerr BA, Willey JS. Osteoarthritis as a Systemic Disease Promoted Prostate Cancer In Vivo and In Vitro. Int J Mol Sci 2024;25(11):6014. doi: 10.3390/ijms25116014 Go to original source... Go to PubMed...
  75. . Turkiewicz A, Díaz Y, Poveda-Marina JL, Duarte-Salles T, Prieto-Alhambra. Knee osteoarthritis and risk of ten cancers in a large real-world matched cohort study. Osteoarthritis Cartilage 2020;28:S421-S422. doi: 10.1016/j.joca.2020.02.654 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.