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The role of cytokines in acute myeloid leukemia: A systematic review
Tomas Kupsaa,b, Jan Milos Horaceka,b, Ladislav Jebavya,b

Background. Acute myeloid leukemia (AML) shows a high degree of heterogeneity owing to a variety of mutations 
and the mechanisms of leukemogenesis. This heterogeneity is often not reflected in standard treatment approaches 
which while providing predictable outcomes in the majority of patients fail in particular cases even with high-dose 
multiagent chemotherapy regimens. Further, the unselective effect of chemotherapy leads to high treatment-related 
toxicity and the enormous risk of infection during prolonged pancytopenia, preventing further dose escalation. 
Objectives. Cytokines play a role in leukemogenesis, AML cell persistence and treatment outcome. In this review we 
highlight cytokine dependent mechanisms essential for AML cell survival and the role of single cytokines in leukemo-
genesis and allogeneic transplantation-related phenomena. Cytokine-related mechanisms of leukemogenesis, AML cell 
persistence and resistance to chemotherapy are complex. Modulation of the cytokine network can disrupt signalling 
pathway activation and overcome the high resistance to treatment. It may also increase the selectivity of AML treatment, 
reduce the overall treatment-related toxicity and improve outcomes of AML treatment in all age groups of patients. 
Conclusions. This review provides a deeper insight into these processes with focus on the most vulnerable step. 
Special attention is paid to the possibility of selective influence on defined cell populations for therapeutic target. 
We believe that modulating cytokine-dependent processes in AML is an approach that could be included in standard 
chemotherapeutic regimens for improving overall treatment outcome.
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INTRODUCTION

AML is an aggressive disorder characterized by 
accumulation of immature malignant cells in bone 
marrow. Most adult patients with AML die from the 
disease. Even high-dose multi-agent chemotherapy and 
allogeneic stem cell transplantation often fail to pre-
vent relapses. The heterogeneous phenotype of AML 
is based on cytogenetic mutations and molecular aber-
rations. Based on analysing large cohorts of patients, 
most have a defined prognostic significance1-5 with di-
rect impact on treatment strategy. Progress in molecu-
lar methods is enabling more accurate prediction of 
patient outcome6 and providing useful MRD markers. 
Nevertheless, prognostic factors in AML are heteroge-
neous, and new ones are still likely to be found. Cytokines 
are soluble molecules carrying specific information for 
target cells. Acting through a surface receptor, they pro-
vide target cells with specific information about condi-
tions inside the organism, and cause a specific response. 
The response may be, e.g. stimulating and activating in 
the case of inflammation or in the case of tissue damage, 
causing proliferation or apoptosis. Under abnormal condi-
tions, this physiological role of cytokines is maladaptive. 
The influence of inflammation and altered cytokine sig-
nalling on oncogenesis, leading to tumour progression, 
has been documented7,8, and is still a site of interest in 
several solid tumors9-11. Blood cells and their marrow-

based progenitors are exquisitely responsive to their en-
vironment, and cytokines are an essential part of it. On 
binding to cytokine receptor, signal transduction pathways 
(STP) are activated. Abnormalities in signalling through 
STP are common in AML. In fact, autonomous cell prolif-
eration during leukemogenesis is unlikely without altered 
STP activation. The frequency of STP activation in AML 
(ref.12) exceeds the frequency of mutations and genetic 
alterations in receptors or STP components13,14, suggest-
ing that STP activation, triggered by cytokines binding 
to unmutated receptors, is a frequent event in leukemia 
development and should not be underestimated. Aberrant 
cytokine levels in AML and abnormal responsiveness to 
them is well-documented. The overexpression of cytokines 
in leukemia patients declines in complete remission15,16, 
suggesting that these events are dependent on AML activ-
ity, possibly due to autonomous blast cytokine secretion. 
Several factors have been reported to contribute to the 
growth advantage of the malignant clone, including the 
autonomous proliferation and autocrine production of cy-
tokines by these cells, such as G-CSF, GM-CSF, IL-1 and 
IL-6 (ref.17-19). Based on attempts to further classify AML 
patients according to cell response to changing levels of 
chemokines20, new classification schemes of AML have 
been developed. These also reflect the ability of AML 
cells to stimulate angiogenesis or chemotaxis. It remains 
to establish whether this kind of classification for different 
cytokine families, especially interleukins, is of prognostic 
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value in AML risk stratification. This would provide us 
with deeper insight into contributing factors triggering 
blast cell proliferation, migration and tissue infiltration 
as these are the basic questions in AML cell biology with 
possible treatment consequences.

CYTOKINES IN AML PROLIFERATION  
AND PROGNOSIS 

Based on their biological effects, cytokines may be di-
vided into six major families21 – interleukins (IL), chemo-
kines, interferons (INF), tumor necrosis factors (TNF), 
growth factors of hematopoiesis and transforming growth 
factor-β (TGF-β) family members. For further details see 
Table 1.

Cytokine levels at AML diagnosis are aberrant and 
normalize in remission15,16. Levels of circulating cytokines 
and changes in patient outcome have been the subject of 
numerous studies. It has been reported that cytokine stim-
ulation causes abnormal responsiveness in leukemic blasts 
and that leukemic blasts are often a source of cytokine or 
chemokine production possibly triggering autocrine and 
paracrine loop activation. 

There are a large number of cytokines circulating in 
the plasma with various possible effects on AML blast cell 
proliferation. The most troublesome for assessing their 
effects is that cytokines are produced and act simultane-
ously, with a partially overlapping spectrum of biological 
effects due to frequent receptor sharing. This makes it dif-
ficult to predict the relationship between leukemogenesis 
contribution and individual cytokine levels.

The IL-1, IL-2 and β-chemokine of CC subgroup CCL-
3 (CC-ligand-3) have been shown to stimulate leukemic 
cell proliferation22-25. To further assess the role of several 
single cytokines on the proliferation of patient-derived 
AML cells, a cytokine-induced proliferation study was 
performed26. In the total study population, only autono-
mous blast cell proliferation was a significant predictor 
for prognosis from the multivariate analysis. Assuming 
that especially for the intermediate-risk AML patients, a 
further prognostic classification would have significant 
benefit, the AML blasts of FLT3-ITD (FMS-like tyrosine 
kinase 3 internal tandem duplications) negative patients 
with intermediate risk cytogenetics were further studied. 
The strongest responses to cytokine stimulation were 
observed for IL-3, GM-CSF and G-CSF, but only the re-
sponses to IL-1α and M-CSF were found to be predictive 

Table 1. Basic classification of cytokines.

Cytokine family Functional subgroups Physiologic effect

Interleukins IL-3, IL-7, Flt3-ligand - stimulate hematopoiesis

IL-1, IL-6 - pluripotent, inflammatory

IL-2, IL-4, IL-5, IL-12, IL-13 - regulate T and B cell cooperation

Chemokines α: CXC  

β: CC

γ: C, δ: CX3C 

- regulate migration of granulocytes and lymphocytes 
- promote angiogenesis and inflammation 
- regulate migration of monocytes 
- enable medullar homing 
- regulate migration of lymphocytes

Interferons Type I: INF α, β, ω - antiviral immunity 
- anti-proliferative effect

Type II: INF γ - antitumorous activity 
- response to intracellular pathogens

Tumor necrosis factors TNFα: - pro-inflammatory pyrogenic 
- activates non-specific immunity
- adhesive molecule expression on endothelial surface 
- may cause apoptosis - 
- overproduction causes SIRS

TNFβ: - similar in effect, but produced by T- and B lymphocytes

Colony Stimulating 
Factors 

G-CSF, GM-CSF, M-CSF  
Erythropoietin 
Thrombopoietin

- stimulate proliferation and maturation of myeloid precursors

TGF-β - stimulate growth of fibroblasts and extracellular matrix 
production 
- lead to MMPs inhibition

Modified from: (ref. 21) 
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for therapeutic outcome. In this study, the response to 
IL-7, IL-11 and TNF-α could be interpreted as inhibition 
of AML blast cell proliferation. IL-7 is a major cytokine 
in lymphopoiesis and IL-11 plays a role particularly in 
thrombopoiesis, but the response to TNF-α stimulation in 
this study remains confusing. In a different study27, within 
AML and high risk myelodysplastic syndrome (MDS) 
patients, a close correlation between TNF-α level and 
leukocyte count was found. Lower TNF-α levels were as-
sociated with higher CR rates, better overall and event-free 
survival. Higher TNF-α levels were statistically significant 
when leukocyte count was excluded from the models, con-
firming their predictive value for therapeutic outcomes. 
Higher serum TNF-α levels further correlated with higher 
levels of β2-microglobuline, creatinine and alkaline phos-
phatase, and inversely with creatinine clearance and albu-
min levels. Higher TNF-α levels were also correlated with 
poorer performance, M4-M5 AML subtypes according 
to French-American-British (FAB) classification and the 
presence of infection. 

Further, although the IL-3-receptor expression within 
the cytokine-induced proliferation study was not measured 
and thus the data on IL-3R density are not available, the 
non-significance of IL-3 stimulation response is an issue. 
As cytokine receptor expression is inducible21, we can 
expect sufficient expression of this receptor during the 
cytokine induced 7 day proliferation assay26. The density 
of IL-3R-α subunits (CD 123) on AML blasts was found 
to be an independent risk factor for AML (ref.28). At the 
clinical level, a significant correlation between the level 
of IL-3R expression and the number of leukemic blasts at 
diagnosis was observed. Patients exhibiting elevated IL-3R 
levels had lower complete remission rates and survival 
duration than those with normal IL-3R levels. Following 
IL-3R stimulation, various STPs, including MAPK (mito-
gen activated protein kinase) MEK/ERK (ref.29-31), phos-
phatidylinositol 3-kinase (PI3K) (ref.32,33), protein kinase 
A (PAK) (ref.34) and signal transducer and activator of 
transcription 5 (STAT-5) are activated. IL-3 mediated ac-
tivation of STAT-5 up-regulates the antiapoptotic protein 
Bcl-XL and promotes cell survival35. STAT-5 activation is 
required for the maintenance and expansion of primitive 
hematopoietic stem and progenitor cells, in both normal 
and leukemic hematopoiesis36. These data demonstrate 
the ability of IL-3 to activate various STPs. Proteomic 
studies on JAK/STAT, RAS/Raf/MEK/ERK and PI3K/
AKT pathways revealed, that the number of activated 
STPs correlates inversely with patient outcome37. As 
there were patient samples with either no or all STPs ac-
tivated, extensive cross-talk and cross-activation between 
these pathways is probable. Deregulated STP signalling 
contributes to the proliferative advantage of the leukemic 
blasts and the high degree of various STPs activation is a 
crucial step in leukemogenesis. Of the STPs mentioned 
above, STAT-5 appears to be the most interesting. STAT-
5 activation is not restricted to IL-3R downstream pro-
cesses. STAT-5 (and MAPK) are constitutively activated 
in FLT3-ITD positive AML, and are sufficient to promote 
IL-3-independent proliferation of AML cells38. In contrast 
to wild type FLT3 receptor, FLT3-ITD is a potent STAT-

5 activator. The juxtamembrane STAT-5 docking sites 
and role of mutation of these sites have been described39. 
Activated STAT-5 up-regulates MCL-1 (myeloid cell leu-
kemia-1), which is an essential survival factor for both 
normal and leukemic hematopoiesis. STAT-5 inhibition 
then completely abrogates this process40. Futhermore, in 
chronic myeloid leukemia, the BCR-ABL kinase activ-
ity also activates STAT-5 and causes IL-3 independent 
expression of antiapoptotic protein Bcl-XL

 (ref.41). The 
importance of STAT-5 activation is also documented for 
leukemic stem cells (LSCs) or leukemia initiating cells 
(LICs). LSCs are a rare population of cells with a specific 
immunophenotype42, capable of high persistence, self-
renewal, proliferation and differentiation into malignant 
blasts. In a study designed to demonstrate the functional 
heterogeneity of LSCs and the role of STAT5 activation, 
highly active STAT-5 signalling was associated with coex-
pression of oncogenes of different molecular subgroups in 
LSCs and in the sample of 201 patients, it was restricted 
to those with the poorest prognosis43. 

Given its influence on cell proliferation (and leuke-
mogenesis), it follows that STAT-5 activation needs to be 
regulated properly. To provide greater insight into com-
plex processes affecting the degree of STAT-5 activation, 
the murine IL-3 dependent BaF3 cell line (BaF3 cells 
lack expression of gp 130, a common receptor subunit 
of the class I - IL-6 subfamily cytokine receptor, for fur-
ther details see below) was investigated. RhoH is a con-
stitutively active member of the family of Rho GTPases. 
Its expression is restricted to the haematopoietic lineage 
where it serves as a positive regulator for T-cell selection 
and mast cell function and, as a negative regulator for 
growth-related functions in other lineages. RhoH regulates 
IL-3-induced signalling through modulation of the activity 
of STAT proteins44. The overexpression of RhoH decreas-
es IL3-induced proliferation and the activity of STAT-5. 
The surface expression level of the IL-3 receptor α-chain 
(CD123) is inversely correlated with the expression levels 
of RhoH. In RhoH-deficient cells, the STAT-5-dependent 
gene for interferon regulatory factor-1 (IRF-1) was up-reg-
ulated, leading to an up-regulation of CD 123 expression. 
Interestingly, only BaF3 cells that overexpressed RhoH 
were able to activate STAT1 after stimulation with IL-3. 
Activation of STAT-1 is known to coincide with cell cycle 
arrest or apoptosis and the STAT-1 dependent cell cycle 
inhibitors p21Cip1 and p27Kip1 were shown to be up-
regulated due to RhoH overexpression. As mentioned, el-
evated CD123 expression in AML patients contributes to 
increased proliferation of leukemic blasts, hyper-activation 
of STAT-5 and poor prognosis28. Low expression levels 
of RhoH were also described as another factor in poor 
patient prognosis45. These data demonstrate that these 
two findings might be connected.

Interleukin 6 
IL-6 has diverse effects in malignant cell biology, with 

proven prognostic impact in diffuse large-cell lymphoma 
and chronic lymphocytic leukemia46,47. IL-6 is a pleiotro-
pic cytokine that can be constitutively expressed in AML 
cells48, IL-6 levels are markedly increased in AML/MDS 
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patients16. Activation of IL-6 signal transduction involves 
dimerization of IL-6 receptor gp130 subunit, consequently 
recruitment of gp130-associated protein–tyrosine kinases 
Jak1, Jak2, and Tyk2 and tyrosine phosphorylation of 
STAT-3, to a lesser extent STAT-1 (ref.49). At least two 
other STPs (ERK and PI3K) are also activated by IL-6 
(ref.50-52). STAT-3 plays a key role in G1- to S-phase cell-
cycle transition through the up-regulation of cyclins D2, 
D3, A, and cdc25A and concomitant down-regulation of 
p21 and p27 (ref.53). Constitutive STAT-3 activation has 
been demonstrated in AML and is described in about 20% 
of patients54. It was later shown that STAT-3 is constitu-
tively phosphorylated on Tyr705 and Ser727, which could 
be not further up-regulated by treatment with IL-6. AML 
cells with constitutive STAT-3 activation also secreted 
high levels of IL-6 protein, suggesting probable Jak/STAT 
pathway stimulation in an autocrine or paracrine manner, 
or both55. This might lead to a growth advantage of the 
malignant clone, although this has not been proved. In a 
study on 75 patients IL-6 serum levels were not found to 
be predictive for CR rates, survival or event free survival27. 
Whether this was caused by STAT-1 activation or higher 
TGF-β1 serum levels remains unclear. The main function 
of TGF-β1 in hematopoietic cells is to regulate cell pro-
liferation by inducing growth arrest in the G0/G1 phase 
of the cell cycle56,57. TGF-β1 is a member of the TGF su-
perfamily of proteins. TGF-1 exerts its effects by binding 
to its receptor (TGF-receptor type II, TGF-RII), which 
results in recruitment of a second receptor chain (TGF-
receptor type I, TGF-RI) (ref.58). Hetero-dimerization of 
the receptor chains leads to phosphorylation of TGF-
RI, resulting in activation of its intrinsic kinase activity. 
SMAD (Sma- and Mad related) proteins 2 and 3 are 
subsequently phosphorylated by the activated TGF-RI, 
leading to their association with SMAD4 and transloca-
tion to the nucleus, where the SMAD2, -3, -4 complex 
initiates gene transcription of TGF-1-responsive genes59. 
To explore cross-talk between the IL-6 and TGF-1 path-
ways in AML blast cells, the effect of TGF-1 pre-treatment 
on IL-6-induced STAT-3 tyrosine phosphorylation was 
studied. In 10% (4 out of 40) of AML patients, a signifi-
cant reduction in IL-6 mediated STAT-3 tyrosine phos-
phorylation after TGF-β1 pre-treatment was observed. 
Measured by means of SMAD3 translocation, TGF-β1 
affected all of the AML cases studied, but only reduced 
IL-6-mediated STAT-3 tyrosine phosphorylation after pre-
treatment with TGF-β1 was associated with apoptosis60. 
In conclusion, although 10% (4/40) is a small percentage, 
at least these patients could benefit from TGF-β1 treat-
ment. Unfortunately, further specification of this group by 
cytogenetics or molecular genetics is not available.

CHEMOKINES

Chemokines form a cytokine family of soluble media-
tors with a molecular weight up to 10 kDa. Chemokines 
(the name of this group comes from origin chemotactic 
cytokines) help to regulate cell migration, are involved 
in angiogenesis, cellular growth control, inflammation 

response development and immunomodulation. All nu-
clear cells can produce chemokines, which is of major 
importance as all nuclear cells can take part in immune 
system activation. Chemokine secretion appears after pre-
stimulation. There are four subgroups of chemokines dis-
tinguished according to the spacing of highly conserved 
cystein residues: C, CC, CXC, CX3C. With an overlapping 
spectrum of action and some kind of receptor nonspeci-
fity, chemokines form a network redundant in count but 
this redundancy provides robust outputs of network acti-
vation21,61-65. In a complex study by Bruserud, the effects 
of various chemokines on proliferation of patient-derived 
AML cells and constitutive chemokine release by pri-
mary AML cells have been investigated in vitro in AML 
cells derived from 68 consecutive patients20. Exogenous 
chemokines usually had no effect on AML blast cell pro-
liferation, but having the hematopoietic growth factors 
(IL-3 + GM-CSF + stem cell factor - SCF) added to the 
cultures, proliferation in suspension cultures occurred 
and specific patient subsets were identified. In nearly 
one third of patients´ AML cell samples, chemokine 
stimulation induced proliferation or led to divergent ef-
fects on proliferation. Further, the AML cells were found 
to release chemokines of homeostatic and inflammatory 
groups, and of both pro-angiogenic, with the highest levels 
detected for CXCL8, and the anti-angiogenic group. In 
contrast, some chemokines, including CXCL12 (acting 
on CXCR4, for more information see below) were not 
detected in any, or only in a few patients. The influence 
of chemokine release on chemotaxis was also studied. 
Although the patterns of chemokine release in AML cell 
samples differed, in the presence of chemokine release, 
chemotaxis was stimulated as a whole, with no detect-
able specific effect on various T-cell subsets. Based on 
experimental data, the patients were divided according 
to hierarchical clustering into subgroups for chemokine 
induced proliferation, autonomous chemokine secretion 
and chemotaxis activation. There was a significant cor-
relation between no detectable in vitro proliferation and 
low chemokine release, showing that chemokines are ex-
creted at higher rates by proliferating cells. None of these 
subgroups correlated with known prognostic factors, e.g. 
cytogenetics of FLT3 mutation status, demonstrating the 
heterogeneity of growth factors-dependent AML cells.

Besides the descriptive outcomes of the study men-
tioned above, several chemokine characteristics are 
noteworthy. The chemokine receptor/ligand interactions 
orchestrate the migration of cells to peripheral tissues66. 
As CXCL8 is usually secreted in highest levels, serum 
CXCL8 seems to partly reflect the AML cell burden67. The 
release of angiogenic stimuli from the AML cells is accel-
erated in hypoxia. In a hypoxic environment, the hypoxia 
inducible factor 1α (HIF-1α) expression by AML cells is 
increased, leading to up-regulation of angiogenesis-related 
genes and angioregulatory cytokine expression68. AML 
cells cultured in vitro with 1% O2 showed increased release 
of several CCL (CCL 3,4,5,7,8) and CXCL (CXCL1 and 
proangiogenic CXCL8) chemokines, vascular endothelial 
growth factor (VEGF) was also secreted at higher rates, 
compared to the same samples cultured at 21% O2. The 
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wide variation in cytokine expression between patients, 
observed in previous studies, persisted. The angiogenic 
effect of AML cells is, except for cytokines, also mediated 
by angiopoietin-1 (Ang-1) and by the matrix metallopro-
teinases (MMPs). Ang-1 is an AML cell constitutively 
released agonist on Tie-2 receptor with various interac-
tions and possible therapeutic influence of this system69. 
MMPs are zinc-dependent endopeptidases able to degrade 
all components of the extracellular matrix (ECM). The 
ECM cleavage leads to removing physical barriers and 
prepares a new space for angiogenesis. The AML cells 
often show constitutive release of several MMPs together 
with proangiogenic cytokines, which rapidly leads to an-
giogenesis and possibly facilitates extramedullar spread 
of the AML (ref.70). 

CXCL12/CXCR4 interaction in AML
The best investigated single chemokine (not only in 

AML) is CXCL12. CXCL12 (often called stromal-derived 
factor 1α, SDF-1α) is a homeostatic chemokine consti-
tutively secreted by marrow stromal cells. SDF-1α binds 
to CXCR4. This interaction allows it to retain hemato-
poietic progenitors and leukemia cells inside the bone 
marrow and allows a high persistence of leukemia cells 
in the bone marrow. Binding of SDF-1α to CXCR4 leads 
to receptor phosphorylation71, triggering prolonged ac-
tivation of ERK and PI3K pathways72, which promotes 
(leukemia) cell survival73,74. The increased CXCR4 expres-
sion on the AML cells is an independent prognostic factor 
and a predictor of poor outcome in AML regardless of 
FLT3 mutation status75,76, but if the FLT3 is mutated, the 
CXCR4 expression is further enhanced77. Further studies 
revealed that SDF-1α increases human ether-à-go-go re-
lated gene 1 (hERG1) K(+) channel expression in a dose 
dependent manner. SDF-1α further increases expression 
of several genes including beta-catenin, cyclin D1 and c-
myc, which is abolished when the hERG1 K(+) channels 
are blocked78. Here the possibilities of pharmacologic in-
teraction become obvious. The SDF-1α analogue AMD 
3100, known as plerixafor, is used in mobilizing normal 
progenitor cells79-80. Various SDF-1α antagonists have 
been investigated. The polypeptide RCP168 seems to have 
strong antagonistic effect on the stromal cell-induced che-
motaxis of leukemic cells. Furthermore, RCP168 blocked 
the binding of anti-CXCR4 monoclonal antibody 12G5 
to surface CXCR4 in a concentration-dependent manner 
and inhibited SDF-1alpha-induced AKT and extracellu-
lar signal-regulated kinase phosphorylation81. Equivalent 
results were obtained with the small-molecule CXCR4 
inhibitor AMD3465, a second generation CXCR4 inhibi-
tor. AMD 3465 antagonized SDF-1α and stroma-induced 
chemotaxis and suppressed stroma activated PI3K/AKT 
and MEK/ERK pathways, which effectively mobilized leu-
kemia cells and stem cells into circulation and enhanced 
the sensitivity to chemotherapy or FLT3-inhibitor-induced 
cell death82. One more candidate with possible treatment 
consequences is E-4031, which can induce G0/G1 ar-
rest, impair SDF-1α induced proliferation or even induce 
apoptosis of AML cells78. From the above data, it is obvi-
ous that SDF-1α/CXCR4 interaction plays a key role in 

AML development and therapeutic outcome. Modulating 
this interaction is a possible therapeutic approach. As 
the SDF-1α receptor inhibition sensitizes the AML cells 
to chemotherapy, it is presumed to reach either standard 
outcomes with less intense chemotherapy and decreased 
toxicity, or even better outcomes without further damag-
ing the patients by more aggressive treatment regimens. 
By far the most important advantage of this possible ap-
proach is the ubiquitous expression of CXCR4 in cells 
populating bone marrow, which would allow us to use 
this strategy in various haematological malignancies83,84. 

CYTOKINES IN ALLOGENEIC BONE MARROW 
TRANSPLANTATION

Bone marrow transplantation (BMT) is a sophisticat-
ed procedure of replacing the patient´s hematopoiesis 
by donor graft. The process of engraftment is substan-
tially dependent on graft pluripotent cell stimulation by 
various cytokines and the repopulation of bone marrow. 
It also assumes sufficiently mature cell production, as 
well as normal hematopoiesis, is possible due to prop-
er cytokine interplay. The aim of further cytokine level 
study in pre- and post-transplant period is to recognize 
groups of patients with either better outcome and lower 
risk of complications, or higher risk groups in terms of 
graft rejection or GvHD development. The cytokines are 
abundant and functionally diverse. For this reason, it is 
not easy to describe the integrative effect of cytokines 
on BMT outcome. According to pre-transplant cytokine 
profile investigations, the cytokine profiles of patients un-
dergoing BMT differ from each other, and all differ from 
healthy controls, although all patients achieved complete 
remission. Briefly, three subgroups of patients accord-
ing to hierarchical clustering could be identified. These 
groups differed especially in the hepatocyte growth factor 
(HGF) and G-CSF levels. One of these groups, character-
ized by high levels of HGF and G-CSF, showed low early 
treatment-related mortality85. 

Apropos allogeneic stem cell transplantation, a novel 
T-hepler lymphocyte subset called Th17, with distinct ef-
fects in allotransplanted patients, has been described86. 
This lymphocyte subset was shown to have an important 
role in GvHD development and AML relapse control. 
The Th17 cells preferably differentiate from CD4+CD161+ 
T-cell subset, but there are probably more pathways pos-
sible87,88. Th17 development seems to be dependent on 
IL-1β signalling, supported by IL-6 and IL-23 (ref.89), with 
a distinct role for TGF-β (ref.90). AML cells can affect 
T-cell differentiation and Th17 development within the 
bone marrow through their release of IL-1β, IL-6 (ref.91) 
and T-cell chemotactic cytokines20,92. Surprisingly, the 
levels of circulating Th17 cells were not confirmed to be 
increased in untreated AML patients93, which is in con-
trast to a previous study94, possibly due to different mean 
age of patients enrolled. On the other hand, Th17 cells 
are not depleted during conventional chemotherapy and 
circulating Th17 cells can be detected even in periods of 
severe chemotherapy-induced lymphopenia93, so that suf-



Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2012 Dec; 156(4):291–301.

296

ficient pre-transplant levels of Th17 cells may be expected. 
Th17 cells were not shown to have direct antileukemic 
effect in AML, but the Th17/Treg (T-regulatory cells) ra-
tio seems to be important. Treg are immunosuppressive 
CD4+ CD25HIGH regulatory T-cells, high pre-treatment Treg 
levels or lower Th17/Treg ratio seem to be associated with 
adverse prognosis95. Pre-transplant targeting of Treg cells 
or affecting Th17/Treg ratio is then a possible strategy for 
reducing the overall risk of AML relapse96.

Th17-lymphocyte subset coordinates and regulates lo-
cal inflammation through IL-17 release97. The biological 
function of Th17 in allotransplanted patients is to facili-
tate GvHD development. Genetic variants in the IL-23/
Th17 pathway, based on gene polymorphism, have influ-
ence on both infectious and immunological posttransplant 
complications98. Secondly, high levels of IL-17 during 
early posttransplant cytopenia were observed in patients 
who later developed acute GvHD (ref.99). This was quite 
a small study and hence the results should be interpreted 
with caution, but this observation supports the results of 
the previous study98 and highlights the role of IL-17 in 
GvHD development. Further, patients receiving higher 
dose Th17 cells in the bone marrow graft or a higher dose 
Tc17 cells in the PBSC graft exhibited increased incidence 
of acute GvHD. Increased levels of Th17 cells were also 
observed at the onset of acute GvHD and these levels 
normalized when patients responded to treatment100. 
However, the necessity of Th17 cells for GvHD devel-
opment is not absolute in GvHD pathogenesis101, Th17 
cells interact with other T-cell subsets and the relative 
importance of distinct Th subsets seems to differ between 
various organs, possibly due to organ-specific variation in 
the chemokine network and Th subsets-specific chemotac-
tic receptor expression102,103. These observations suggest 
that Th17 cells are important in GvHD development. As 
the IL-17 itself has only minor anti-proliferative effect on 
AML blasts, which was observed only in a minority of 
patients93, its role seems to be initially in immunomodu-
lation. The results mentioned above indicate, that Th17 
cells enhancement should be considered at high risk of 
AML relapse with no clinical GvHD, whereas Th17 cells 
inhibition or depletion may be useful in treatment of ex-
cessive GvHD.

CYTOKINES IN AML THERAPY

The effects of various cytokines on AML cell prolif-
eration and survival have been tested104. Logically, cyto-
kines with major impact on AML cell proliferation or 
apoptosis are candidates for therapeutic administration. 
IL-2 and the IL-2 in combination with histamine dihydro-
chloride were tested in randomized maintenance therapy 
trials. IL-2 alone was not found to be an effective remis-
sion maintenance therapy for AML patients in first CR 
(ref.105). The combined immunotherapy of IL-2 with his-
tamine dihydrochloride significantly improved leukemia 
free survival, but the overall survival was not improved106. 
The data of this study were later reassessed and the con-
sistency and robustness of the study were confirmed. 

Leukemia free survival was offered as an acceptable sur-
rogate for overall survival107. The patients in these trials 
were randomized according to complete remission attain-
ment or demographic parameters, not according to STP 
activation, cytokine receptor expression etc., which does 
not fully reflect the AML heterogeneity. The disclosure 
of exact STP activation or further molecular mechanisms 
at the time of therapy initiation is not routinely available. 
This seems to be the main disadvantage of cytokines usage 
in AML treatment. The high activity of the disease often 
calls for urgent treatment initiation, so that the usage of 
suitable cytokines in AML treatment is not possible ear-
lier than during the consolidation phase, when each cyto-
kine, even if leading to massive AML burden reduction, 
would have only narrow spectrum of use. In particular 
cases, the AML cell growth is independent upon cytokine 
stimulation38. On the other hand, there are chemokine-me-
diated processes affecting all cells participating in hema-
topoiesis or immune response control, namely SDF-1α/
CXCR4 interaction in bone marrow populating cells or 
Th17 cell activity in immune response, GvHD develop-
ment and relapse control. Inhibition of leukemia mediated 
angiogenesis or MMPs inhibition is a possible addition to 
treatment of extra-medullary spreading leukemias, which 
are difficult to treat, show inferior outcomes and occur 
more commonly after allogeneic stem cell transplantation, 
as the graft versus leukemia effect seems to be stronger in 
bone marrow than in the peripheral tissues108. Also some 
signalling pathways, for example STAT-5, have major 
impact on leukemia cell proliferation and are commonly 
activated in AML with various genetic alterations.

We do believe that various modulations of these in-
teractions will find therapeutic application. There is still 
much to investigate and describe, until the cytokine net-
work modulation or specific STPs inhibition become an 
integrated part of post-remission therapy but if success-
ful, it would greatly improve AML therapy outcomes. 
While the standard chemotherapy regimens have reliable 
outcomes in the majority of cases96, cytokine network 
modulation would provide increased selectivity of treat-
ment with the potential of further improvement in disease 
control and treatment-related toxicity reduction.

CYTOKINE RECEPTORS  
AND THEIR PROGNOSTIC SIGNIFICANCE

The prognosis of AML patient is based on the interac-
tion of treatment, the ability of AML cell to survive, and 
factors like increased risk of infections and life threatening 
bleeding. The survivability depends on conditions trigger-
ing cell division or providing the cell with an antiapop-
totic phenotype and hence drug resistance. Cytokines 
are involved in intercellular communication, capable of 
providing target cells with proliferation inducing signals 
and protect it against apoptosis. They act through bind-
ing to surface receptors, that, based on the structure and 
STP activation mechanisms, may be divided into different 
families21,109. Class I hematopoietic cytokine receptors are 
multimolecular complexes of different receptor subunits 
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α, β and χ. According to transmembrane subunit, IL-2, 
erythropoietin receptor (EPOR), also called IL-3 and IL-6 
subfamilies are distinguished. The IL-2 receptor subfamily 
is sharing χC (CD 132) subunit and binds IL-2, IL-4, IL-7, 
IL-9, IL-13, IL-15 and IL-21. The IL-3 receptor subfamily 
carries βC (CD131) subunit and binds IL-3, IL-5, GM-CSF 
and EPO. The IL-6 receptor subfamily is sharing β chain 
gp130 (CD 130) and binds IL-6, IL-11, IL-27, leukemia 
inhibiting factor (LIF) and oncostatin M. Stimulated 
class I hematopoietic receptors cause JAK/STAT signal-
ling pathways activation. Note that IL-3, affecting mostly 
myeloid progenitors, and IL-7, affecting mostly lymphoid 
progenitors, have receptors of different subfamilies. Class 
II hematopoietin receptors bind interferons α, β, χ and 
IL-10. The class II hematopoietin receptors show struc-
tural similarity to class I hematopoietin receptors and are 
also coupled with JAK/STAT signalling transduction. The 
TNF superfamily of receptors and ligands comprises at 
least 30 receptors and 20 ligands. Signalling through TNF 
receptors may lead either to cell proliferation and inflam-
matory response, or may trigger apoptosis by receptor 
death domain activation. The chemokine receptors are 
G-protein coupled, bind chemokines with quite a high 
affinity and typical overlapping receptor specificity. The 
TGF-β receptor family consists of seven type I and five 
type II receptors, that heterodimerize to form receptors 
for multiple TGF-β family members. Further signalization 
is either SMAD dependent or independent.

In AML cell biology but not only in this disease, the 
receptor tyrosine kinase (RTKs) family is clinically most 
relevant at the moment. It comprises receptors vital for he-
matopoiesis and mature blood cell function. The two most 
important RTKs members in AML are c-Kit and FLT-3 re-
ceptor. Platelet derived growth factor receptor (PDGFR), 
anaplastic large cell lymphoma kinase (ALK), fibroblast 
growth factor (FGF) receptor, IL-1 receptor, and M-CSF 
receptor also belong to the RTKs family. RTKs are acti-
vated by ligand-induced receptor dimerization. The intra-
cellular kinase domains then become activated and the 
receptor cytoplasmic tyrosin residues and other tethered 
substrates are phosphorylated110. Mutations of c-Kit and 
FLT-3 are often found in AML with normal cytogenetics. 
Mutations in the c-Kit and FLT-3 receptor provide AML 
cell with permanent proliferative signal, protection from 
apoptosis111,112, and negatively influence patient progno-
sis6,113. Specific inhibition of mutated tyrosinkinases is a 
possible therapeutic approach. Unfortunately the results 
are not convincing, probably due to a high degree of in-
ternal heterogenity114. 

QUALITY OF LIFE ASPECT

AML is a serious, mostly lethal disease. It often ap-
pears unexpectedly and with serious symptoms and poor 
prognosis. Treatment consists of aggressive, often mul-
tiagent chemotherapy. Not unexpectedly, as the AML 
treatment is generally disease based, the quality of life 
aspect is often overlooked. From the onco-hematologic 
point of view, the ability to promote or arrest malignant 

cell proliferation is of paramount importance. However, 
from the patient point of view, quality of life is an impor-
tant aspect, and crucial for compliance. Given the long 
duration of treatment with a high risk of fatal complica-
tions and uncertain outcome, this aspect should not be 
underestimated. 

Cytokine levels are increased in AML/MDS patients, 
initiating a pro-inflammatory and pro-proliferative en-
vironment. Inflammation-associated symptoms such as 
fatigue and increased body temperature bear this out. 
Aberrant cytokine levels are responsible for these symp-
toms. The TNF-α, IL-1 receptor antagonist and IL-6 levels 
were found to be related to ratings of fatigue while higher 
IL-6 levels were even associated with poorer executive 
functions before treatment. In both cases, these findings 
were not associated significantly with haemoglobin levels, 
which should be interpreted as evidence of the influence 
of a pro- inflammatory microenvironment115. On the other 
hand, higher IL-8 was associated with better memory per-
formance. There were 54 patients in this study, comprising 
both AML and MDS patients, but only 26 patients were 
reassessed after one month period, so that the follow-up is 
incomplete. When evaluated, the data available show that 
although the fatigue did worsen after therapy initiation, in 
general the treatment did not seem to have adverse effects 
on cognitive function. The overall quality of life was found 
to be acceptable but could be improved. This could also 
be an aspect in novel therapeutic approach evaluation. We 
believe that cytokine investigation will help us to define 
novel therapeutic approaches, allowing the treatment to 
be more accurate in targeting the origin of leukemogen-
esis, and will provide better outcomes and higher quality 
of life for AML patients.

ABBREVIATIONS

AML, Acute myeloid leukemia; CR, Complete re-
mission; ERK, Extracellular signal regulated kinase; 
FLT3-ITD, FMS-like tyrosine kinase 3 internal tandem du-
plications; G-CSF, Granulocyte colony stimulating factor; 
GM-CSF, Granulocyte/macrophage colony stimulating 
factor; GvHD, Graft versus host disease; IL, Interleukin; 
LIC, Leukemia initiating cell; LSC, Leukemia stem cell; 
MAPK, Mitogen activated protein kinase; MMPs, Matrix 
metalloproteinases; MRD, Minimal residual disease; 
PAK, Protein kinase A; PI3K, Phosphatidylinositol 3-ki-
nase; Raf; RAS activated factor; STP, Signal transduc-
tion pathway; STAT, Signal transducer and activator of 
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