Diagnostic and prognostic value of placental growth factor serum concentration in clear cell renal cell carcinoma

Marcela Cechovaa, Matus Chocholatya, Marek Babjuka, Tomas Zimab, Klara Havlovaa, Marketa Koldovaa, Marek Schmidta, Marta Kalousovaa

Background and Aim: Placental Growth Factor (PIGF) plays a crucial role in angiogenesis and was identified as a potential prognostic biomarker in various types of cancer. Therefore, we evaluated the diagnostic accuracy and prognostic value of PIGF serum concentration in patients with clear cell renal cell carcinoma (ccRCC).

Patients and Methods: A total of 49 patients subjected to partial or radical nephrectomy for ccRCC (localized without relapse (lcRCC; n=31), localized with later relapse (rcRCC; n=8), primary metastatic cancer (mccRCC; n=10); median of follow-up 4.4 years) were enrolled in a prospective study to assess the significance of PIGF serum concentration. PIGF was measured prior to surgery and 3 months postoperatively. Our control group consisted of 38 healthy subjects.

Results: PIGF serum concentration was significantly higher in ccRCC compared to controls (P=0.002). The cut-off value of PIGF concentration for the risk of ccRCC was determined at 12.71 pg/mL (AUC=0.729; P=0.0001). Prior to surgery, among ccRCC subgroups, significantly higher PIGF concentration was detected in mccRCC compared to lcRCC (P=0.002). Postoperatively, we observed a tendency to higher PIGF serum concentration in rcRCC compared to lcRCC subgroup, however without significance (P=0.17). The cut-off value for the risk of relapse was 11.41 pg/mL (AUC=0.792; P=0.0003). In subjects with localized ccRCC with PIGF concentration below 11.41 pg/mL 3-years cancer specific survival was 93% compared to 61% in subject with concentration above the cut-off value (P=0.018).

Conclusion: Based on our findings, PIGF serum concentration seems to be a useful biomarker in diagnostics and prediction of prognosis in ccRCC.

Key words: placental growth factor, PIGF, clear cell renal cell carcinoma, biomarker, diagnosis, prognosis

INTRODUCTION

Worldwide, renal cell carcinoma (RCC) is the sixth most frequently diagnosed cancer in men and eighth in women, accounting for 5% respectively 3% of all carcinomas with the highest incidence in the Western countries1. In 2018 in Europe new cases of RCC were estimated to occur in 136,500 patients resulting in 54,700 deaths2.

Although most detected RCCs are incidentally diagnosed small tumours, locally advanced disease is still found in a significant proportion of patients with up to one third presenting with distant metastasis at the time of diagnosis1. Moreover, about 20-40% patients experience recurrence after surgical treatment of localized disease3. The introduction of targeted agents has considerably improved the prognosis of patients with metastatic disease, yet, median survival is beyond two years4.

Despite improvements in diagnostics and treatment, RCC still remains among urological malignancy with the highest mortality. Although several risk models for prediction of recurrence have been introduced, the individual course of diseases is difficult to predict. Biomarkers can improve the diagnostics of RCC, and even more can provide additional predictive accuracy in identifying patients with higher risk of recurrence which would enable treatment individualization and improvement of patients’ prognosis. Therefore, investigation of potential biomarkers is needed.

Cancer-related angiogenesis is crucial for tumour growth and progression, and it is regulated by various tumour cell produced growth factors5. Placental growth factor (PIGF) belongs to vascular endothelial growth factor (VEGF) family, which is the most important trigger of angiogenesis and endothelial cell growth. PIGF stimulates angiogenesis specifically targeting VEGF receptor 1 (Flt-1) and co-receptor neuropilin (NRP1). Originally PIGF was described in human placenta and it is highly expressed throughout pregnancy1. In healthy subjects PIGF serum levels are typically low but increase under pathological conditions such as ischemia, inflammation or tumour growth1,9. Overexpression of PIGF has been described in several types of carcinomas. Furthermore, PIGF was identified as a potential prognostic biomarker of cancer progression as its higher expression correlates with advanced tumour stage, hypervascularity, presence of metastasis and shorter patient survival10-15. However, there...
is only a limited number of studies assessing the role and significance of PlGF in RCC (ref. 16,17).

The present study aimed to evaluate PlGF serum concentration in patients suffering from clear cell renal cell carcinoma (ccRCC), and furthermore, to explore its diagnostic accuracy and prognostic value.

PATIENTS AND METHODS

Subjects

Into this prospective study we included 49 individuals (30 men, 19 women, mean age 62.9±10.6 years) who were subjected to radical or partial nephrectomy due to ccRCC from June 2011 to June 2013. In all resected tumour specimens negative surgical margins were described. For further comparison ccRCC subjects were classified in three subgroups: subjects with localized ccRCC without further relapse (lccRCC, n=31), subjects with localized ccRCC with relapse 6 to 18 months following surgical treatment (rcRCC, n=8) and subjects with primary metastatic carcinoma (mccRCC, n=10). The staging of ccRCC was performed following the 2009 TNM classification system, Fuhrman Nuclear Grading System was used for evaluation of the tumour grade. Surveillance after partial or radical nephrectomy was performed in adherence to the EAU Guidelines for Renal Cell Carcinoma. Median of follow-up of our study group was 4.4 years. During the follow-up relapse occurred in 8 subjects (rcRCC subgroup) and 17 subjects died. Table 1 describes demographic and clinicopathological parameters of ccRCC cases.

Thirty-eight matched for age and sex healthy subjects with no history of any malignant disease formed the control group. In all, basic uro-oncological screening including ultrasound, urine cytology and measurement of PSA were performed following the 2009 TNM classification system, Fuhrman Nuclear Grading System was used for evaluation of the tumour grade. Surveillance after partial or radical nephrectomy was performed in adherence to the EAU Guidelines for Renal Cell Carcinoma. Median of follow-up of our study group was 4.4 years. During the follow-up relapse occurred in 8 subjects (rcRCC subgroup) and 17 subjects died. Table 1 describes demographic and clinicopathological parameters of ccRCC cases.

The study was conducted in adherence to ethical guidelines and approved by the institutional review board and ethics committee. A written informed consent was obtained from all participants prior to entering the study.

RESULTS

Diagnostic accuracy of PlGF in ccRCC

PlGF serum concentration in ccRCC subjects (16.1±10.5 pg/mL) was significantly higher compared to healthy controls (10.5±2.4 pg/mL) (P=0.002). The cut-off value of PlGF serum concentration for the risk of ccRCC was determined at 12.71 pg/mL with AUC of 0.729, providing the specificity of 84.21% and sensitivity of 61.22% (P<0.001). Prior to surgical treatment, a significant difference in PlGF serum concentration was found between lccRCC (13.1±5.1 pg/mL) and mccRCC (25.8±18.1 pg/mL) subgroups (P=0.002). However, we found no statistically significant difference between rcRCC (15.9±6.9 pg/mL) and lccRCC or mccRCC subgroups, respectively. PlGF serum concentration was not found to correlate with tumour stage (T1-T2 vs T3-T4, P=0.76) or Fuhrman’s grade (G1-G2 vs G3-G4, P=0.07).

Biomarker analysis

PlGF serum concentration was assessed with the enzyme-linked immunosorbent assay (ELISA) using standard kits (R&D Systems, Minneapolis, MN, USA) following the manufacturers’ instructions. Results are expressed in picograms per millilitre (pg/mL).

Statistical analysis

Data are presented as the means ± standard deviation (SD) for continuous variables and percentages for categorical variables. For continuous variables the difference between subgroups was analysed by one-way ANOVA or Mann-Whitney U test, as appropriate. The repeated measures ANOVA test was used for the analysis of continuous variables over time. The Receiver Operating Characteristics (ROC) curves were created and relative potential of PlGF to identify ccRCC was specified with calculation of area under the ROC curve (AUC). Kaplan-Meier method was used for survival analysis and log-rank test was performed to compare survival between subgroups. Univariate Cox proportional hazards regression analyses were applied for assessment of PlGF serum concentration as a potential predictor of cancer specific and overall survival. Statistical significance was set at P<0.05. Data analyses were carried out using MedCalc for Windows, version 13.0 (MedCalc Software, Ostend, Belgium).

Blood samples

In all individuals PlGF serum concentration was measured prior to surgical treatment. 3 months postoperatively blood samples were collected from patients with localized disease (lccRCC and rcRCC subgroups). Blood samples were obtained after overnight fast by puncture via cubital vein, at the same time with blood collection for routine control examinations. For PlGF analysis blood was centrifuged for 10 min at 3000 rpm and serum was stored at -80 °C until analysis.

Biomarker analysis

PlGF serum concentration was assessed with the enzyme-linked immunosorbent assay (ELISA) using standard kits (R&D Systems, Minneapolis, MN, USA) following the manufacturers’ instructions. Results are expressed in picograms per millilitre (pg/mL).

Statistical analysis

Data are presented as the means ± standard deviation (SD) for continuous variables and percentages for categorical variables. For continuous variables the difference between subgroups was analysed by one-way ANOVA or Mann-Whitney U test, as appropriate. The repeated measures ANOVA test was used for the analysis of continuous variables over time. The Receiver Operating Characteristics (ROC) curves were created and relative potential of PlGF to identify ccRCC was specified with calculation of area under the ROC curve (AUC). Kaplan-Meier method was used for survival analysis and log-rank test was performed to compare survival between subgroups. Univariate Cox proportional hazards regression analyses were applied for assessment of PlGF serum concentration as a potential predictor of cancer specific and overall survival. Statistical significance was set at P<0.05. Data analyses were carried out using MedCalc for Windows, version 13.0 (MedCalc Software, Ostend, Belgium).

RESULTS

Diagnostic accuracy of PlGF in ccRCC

PlGF serum concentration in ccRCC subjects (16.1±10.5 pg/mL) was significantly higher compared to healthy controls (10.5±2.4 pg/mL) (P=0.002). The cut-off value of PlGF serum concentration for the risk of ccRCC was determined at 12.71 pg/mL with AUC of 0.729, providing the specificity of 84.21% and sensitivity of 61.22% (P=0.001). Prior to surgical treatment, a significant difference in PlGF serum concentration was found between lccRCC (13.1±5.1 pg/mL) and mccRCC (25.8±18.1 pg/mL) subgroups (P=0.002). However, we found no statistically significant difference between rcRCC (15.9±6.9 pg/mL) and lccRCC or mccRCC subgroups, respectively. PlGF serum concentration was not found to correlate with tumour stage (T1-T2 vs T3-T4, P=0.76) or Fuhrman’s grade (G1-G2 vs G3-G4, P=0.07).

Statistical analysis

Data are presented as the means ± standard deviation (SD) for continuous variables and percentages for categorical variables. For continuous variables the difference between subgroups was analysed by one-way ANOVA or Mann-Whitney U test, as appropriate. The repeated measures ANOVA test was used for the analysis of continuous variables over time. The Receiver Operating Characteristics (ROC) curves were created and relative potential of PlGF to identify ccRCC was specified with calculation of area under the ROC curve (AUC). Kaplan-Meier method was used for survival analysis and log-rank test was performed to compare survival between subgroups. Univariate Cox proportional hazards regression analyses were applied for assessment of PlGF serum concentration as a potential predictor of cancer specific and overall survival. Statistical significance was set at P<0.05. Data analyses were carried out using MedCalc for Windows, version 13.0 (MedCalc Software, Ostend, Belgium).

RESULTS

Diagnostic accuracy of PlGF in ccRCC

PlGF serum concentration in ccRCC subjects (16.1±10.5 pg/mL) was significantly higher compared to healthy controls (10.5±2.4 pg/mL) (P=0.002). The cut-off value of PlGF serum concentration for the risk of ccRCC was determined at 12.71 pg/mL with AUC of 0.729, providing the specificity of 84.21% and sensitivity of 61.22% (P=0.001). Prior to surgical treatment, a significant difference in PlGF serum concentration was found between lccRCC (13.1±5.1 pg/mL) and mccRCC (25.8±18.1 pg/mL) subgroups (P=0.002). However, we found no statistically significant difference between rcRCC (15.9±6.9 pg/mL) and lccRCC or mccRCC subgroups, respectively. PlGF serum concentration was not found to correlate with tumour stage (T1-T2 vs T3-T4, P=0.76) or Fuhrman’s grade (G1-G2 vs G3-G4, P=0.07).
Prognostic value of PlGF in ccRCC

Three months postoperatively, higher PlGF serum concentration in ccRCC (14.87±2.96 pg/mL) compared to lccRCC (12.1±5.4 pg/mL) subgroup was found, but the difference was not statistically significant (P=0.17). Table 2 depicts all PlGF serum concentrations.

However, the cut-off value for the risk of relapse was determined at 11.41 pg/mL with AUC 0.792, providing the specificity of 62.96% and sensitivity of 87.5% (P=0.0003) (Fig 2).

3-years cancer specific survival in localized ccRCC subjects (lccRCC and ccRCC subgroup) with PlGF serum concentration below the cut-off (<11.41 pg/mL) was 93% compared to 61% in subjects with PlGF serum concentration >11.41 pg/mL 3-years CSS 61%.

Prognostic value of PlGF in ccRCC

Fig. 1. Cut-off value of PI GF serum concentration for the risk of ccRCC.

Fig. 2. Cut-off value of PI GF serum concentration for the risk of ccRCC recurrence.

Fig. 3. Kaplan-Maier curves of 3-years cancer specific survival (CSS).

DISCUSSION

Angiogenesis is essential for tumour growth and is assumed to be a key factor of cancer progression and development of metastasis. Among various angiogenic factors VEGF is the most powerful and has been extensively studied over the last years. PI GF is a member of VEGF family and its overexpression is associated predominantly with pathological angiogenesis. Increased PI GF concentrations have been described in several conditions including carcinogenesis. Additionally, several studies imply that higher circulating levels of PI GF correlate with cancer aggressiveness. Therefore, PI GF was identified to be a prognostic marker of cancer progression of many...
tumours including breast, ovarian, gastric, colorectal, hepatocellular, lung carcinoma or malignant pleural mesothelioma.10-15,19-22

Although the role of PI GF in diagnostics and estimation of prognosis has been studied in various tumours, little in known regarding this angiogenic factor in RCC. Since, hypervascularization is a common feature among various solid tumours as well as RCC, production of angiogenic factors in kidney cancer cells have been presumed. Takahashi et al. (ref.16) as first proved elevated expression of VEGF and PI GF in hypervascular RCC tissue with no detection of PI GF in normal kidney tissue. Matsumoto et al. (ref.17) analysed PI GF serum levels and its correlation with clinical features of RCC and described association between PI GF concentration and histological grade and tumour vascularity. Furthermore, proposed a prognostic significance of PI GF in RCC.

The aim of the present study was to explore the significance of PI GF serum concentration in patients with ccRCC, the predominant histological subtype of RCC. In the first place, we evaluated the diagnostic significance of PI GF serum concentration. Consistent with previous studies we confirmed significantly higher PI GF serum concentration in ccRCC patients compared to healthy controls. The cut-off value for PI GF serum concentration for the risk of ccRCC was established at 12.71 pg/mL, reaching the specificity of 84.21\% and sensitivity of 61.22\% with AUC 0.729. Based on our results, PI GF serum concentration can be considered as a diagnostic biomarker for detection of ccRCC. However, with respect to AUC most probably as a component of multi-marker diagnostic test rather than a single-marker test.

In our study group PI GF serum concentration was not found to correlate with tumour stage and Fuhrman’s grade. Although, a trend towards higher PI GF serum concentration was observed in ccRCC with more aggressive grade, the results were not significant (G1-G2 vs G3-G4, \(P=0.07\)). This could be explained by the small number of patients and a higher proportion of lower stage and grade tumours.

Secondly, we assessed the potential value of PI GF serum concentration in prediction of relapse and prognosis in patients with localized disease. Postoperatively, we observed a tendency to higher PI GF serum concentration in rccRCC compared to lccRCC. The cut-off value of PI GF serum concentration for the risk of relapse was determined at 11.41 pg/mL and provided the specificity of 62.96\% and sensitivity of 87.5\% with AUC 0.792. 3-years cancer specific survival in patients with localized disease with PI GF serum concentration below this cut-off was 93\% compared to only to 61\% with concentration above the cut-off. According to these findings, we presume PI GF serum concentration can be useful in identifying patients with higher risk of recurrence. Even more, PI GF serum concentration can be considered as a potential prognostic biomarker in ccRCC.

Based on previously published studies we assumed higher PI GF serum concentrations in ccRCC patients compared to healthy individuals. Still, the primary goal of our study was to assess whether higher serum concentrations are of clinical importance in diagnosis and estimation of prognosis in ccRCC. Therefore, we did not examine expression of PI GF in tumour tissue. Main limit of our study was a small number of patients in each subgroup. PI GF was shown to have a significant position in gynaecological non-oncological testing (early evaluation of the risk of pre-eclampsia in pregnant women), resulting in broadening and availability of diagnostic technologies of the marker. Combined with the fact, that ccRCC does not have a suitable biomarker, PI GF could, based on our results, show to be a promising one. Though, further studies on larger patient cohorts are necessary to confirm this premise.

CONCLUSION

We can conclude that PI GF can be a useful biomarker in diagnostics and prediction of prognosis in subjects with ccRCC. Our results show higher PI GF serum concentration in ccRCC patients compared to healthy controls with the cut-off value for the risk of ccRCC at 12.71 pg/mL. Concomitantly PI GF seems to be a predictor of relapse and prognosis in patients with localized disease with the cut-off value at 11.41 pg/mL. In these patients with PI GF serum level below the cut-off, 3-years cancer specific survival was 93\% in comparison to 61\% for those with level above the cut-off.

Acknowledgements: Results of the study were presented at EAU 17th Central European Meeting in Plzeň, Czech Republic, 2017. Abstract named “Placental growth factor – a biomarker for diagnosis, follow-up and prognosis in renal cell cancer” by authors Chocholaty M, Cechova M.

Table 2. PI GF serum concentrations.

<table>
<thead>
<tr>
<th>PI GF (pg/mL)</th>
<th>ccRCC</th>
<th>Controls</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative</td>
<td>lccRCC</td>
<td>rccRCC</td>
<td>mccRCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.1±10.5</td>
<td>10.5±2.4</td>
<td></td>
</tr>
<tr>
<td>3 months after surgery</td>
<td>12.1±5.4</td>
<td>14.87±2.96</td>
<td></td>
</tr>
</tbody>
</table>

*Preoperatively, PI GF serum concentration significantly higher in mccRCC compared to lccRCC (\(P=0.002\)). No statistically significant difference between lccRCC vs rccRCC and rccRCC vs mccRCC. PI GF: placental growth factor, ccRCC: clear cell renal cell carcinoma, lccRCC: localized ccRCC without further relapse, rccRCC: localized ccRCC with later relapse, mccRCC: metastatic ccRCC.
5. Gore ME, Larkin JM. Challenges and opportunities for converting
4. Speed JM, Trinh QD, Choueiri TK, Sun M. Recurrence in
3. Gupta K, Miller JD, Li JZ, Russell MW, Charbonneau C. Epidemiologic
2. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio

Conflicts of interest statement: The authors state that there are no conflicts of interest regarding the publication of this article.

REFERENCES