Change in sagittal profile after implantation of anchored interbody cage in the surgical procedure for degenerative cervical spine disease

Rene Opsenaka, Martin Hankoa, Pavol Snopkoa, Martin Bencoa, Radoslav Hanzela, Branislav Kolarovszki

Background. The aim of this study was to verify the relationship between changes in the segmental sagittal profile (SSP) and changes in the global sagittal profile (GSP) after anterior cervical disectomy with anchored cage implantation (ACDF).

Study design. Prospective study with 2-year follow-up.

Methods. This study includes 104 patients after 1-level or 2-level ACDF operated between the May 2013 and March 2016. SSP was evaluated by Cobb angle measurement of operated motion segment (CobbS) and GSP was evaluated by Cobb angle measurement in C2-C7 segments (CobbG). Both SSP and GSP were measured pre- and postoperatively within a 24 months follow-up period. The influence of factors such as age, gender, number of treated segments and osteoporosis was evaluated using t-tests. The correlation between SSP and GSP changes was assessed by Pearson’s correlation coefficient.

Results. In the early postoperative period after 1-level ACDF, there was a significantly greater increase in CobbS compared to that of the 2-level ACDF (P=0.0149). Male patients experienced a significant decrease of CobbG during the first 6 months after surgery as well as patients with osteoporosis within 12 months after ACDF. After ACDF the SSP change weakly correlated with the GSP change.

Conclusion. SSP change after 1- or 2-level ACDF correlates mostly weakly with GSP change. Male gender and osteoporosis were identified as risk factors for global lordotisation following ACDF.

Key words: anterior cervical disectomy, sagittal profile, risk factors, anchored cage

INTRODUCTION

Anterior cervical disectomy and fusion (ACDF) is one of the most common surgical procedures in the treatment of the degenerative cervical spine disease. The aim is to decompress the spinal canal and spinal nerves located in the degenerated motion segment. Implantation of a cervical interbody cage allows for restoration of the intervertebral space height, induction of interbody fusion and lordotisation of the operated motion segment. However, the intraoperative lordotisation of the motion segment may subsequently regress. The effect of the segmental sagittal profile correction (SSP) on the development of the global sagittal profile (GSP) of the cervical spine is variable and influenced by various factors.

MATERIALS AND METHODS

Our prospective study includes 104 patients with degenerative cervical spine disease. All of these patients underwent a 1- or 2-level ACDF with an implantation of Zero Profile Variable Angle® cage (Zero-P VA®, DePuy Synthes, Switzerland, Fig. 1.). ACDF was indicated based on clinical and graphical findings after 6 weeks of unsatisfactory conservative treatment. In all cases, motion segments with graphical signs of osteochondrosis were indicated for treatment. The exclusion criteria for this study were defined as: presence of myelopathy, pregnancy, inflammatory or malignant disease of the cervical spine, injuries of the cervical spine and general contraindications of elective surgery. According to age they were divided into two groups – patients younger than 55 years of age and patients aged 55 years and more. Similarly, our cohort was divided according to sex, number of operated cervical motion segments and osteoporosis (which was confirmed by means of bone densitometry). All patients underwent a cervical spine X-ray examination in anterior and lateral projections before surgery, in early postoperative period (up to 48 h after ACDF), at 6 weeks, 3 months, 6 months, 12 months and 24 months after ACDF. The SSP was evaluated by means of measurement of the Cobb angle between the upper body surface of proximal and the lower body surface of the distal vertebra of the motion segment (CobbS). The GSP was similarly evaluated using the measurement of the Cobb angle between the lower vertebral body of C2 and the lower vertebral body of C7 (CobbG) or the most distally visualized vertebra above the C7, but always in the same manner for a particular patient (Fig. 2.). Early postoperative changes in sagittal profile
were then evaluated as the difference between CobbS (CobbG) values in the preoperative and early postoperative period (up to 48 h). Differences in SSP and GSP during the further postoperative period were evaluated as the difference between CobbS (CobbG) values over 6 weeks, 3 months, 6 months, 12 months and 24 months after ACDF. Statistical significance of factors such as age, gender, number of operated motion segments and osteoporosis was evaluated using Student’s unpaired t-test. The impact of the cage subsidence (CS) on CobbS value in term of 24 months after ACDF was evaluated using the same test. Correlation between SPP and GSP changes was assessed by means of the Pearson’s correlation coefficient (r). The Cohen scheme was used to interpret Pearson correlation coefficient - absolute values up to 0.1 represented a trivial correlation, values between 0.1 - 0.3 represented a weak correlation, values 0.3 - 0.5 represented a moderate correlation and values above 0.5 represented a strong correlation.

RESULTS

We performed ACDF with the implantation of the anchored Zero-P VA® cage in an overall of 159 motion segments. In 49 patients it was a 1-level ACDF and in 55 it was a 2-level ACDF. The level C5/6 was treated most frequently (Table 1). Table 2 depicts the division of the cohort according to age, gender, number of treated motion segments and presence of densitometrically verified osteoporosis.

The an average preoperative value of CobbS was 1.45°, representing a lordotic SSP. Age, gender and osteoporosis had no significant effect on the SSP according to preoperative findings. In the early postoperative period, the average CobbS was increased by 319.3% (4.63°). In females, patients younger than 55 years and non-osteoporotic patients the acquired segmental lordotisation was bigger, however the differences were not statistically significant (P=0.05). Patients after 1-level ACDF presented with a significantly higher increase of the CobbS value than the CobbS increase in patients after the 2-level ACDF (P=0.0149). 6 weeks after the ACDF an average decrease of CobbS by 16.6% was observed, 3 months postoperatively the decrease reached 27.6% with a further gentle correction – a total decrease of 27.3% in 6 months postoperatively. The average value of CobbS decreased by

<table>
<thead>
<tr>
<th>Segment</th>
<th>Absolute number</th>
<th>Percentual representation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2/3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C3/4</td>
<td>10</td>
<td>6.3</td>
</tr>
<tr>
<td>C4/5</td>
<td>35</td>
<td>22.0</td>
</tr>
<tr>
<td>C5/6</td>
<td>65</td>
<td>40.9</td>
</tr>
<tr>
<td>C6/7</td>
<td>42</td>
<td>26.4</td>
</tr>
<tr>
<td>C7/T1</td>
<td>7</td>
<td>4.4</td>
</tr>
</tbody>
</table>
30% after 12 postoperative months and by 40.9% after 24 postoperative months. We were unable to confirm any effect of gender, age, osteoporosis or number of treated segments on the decrease in lordosis in the period of 6 weeks to 24 months post ACDF ($P=0.05$). 24 months after the ACDF the average value of CobbS was increased by 2.1° (144.8%). Subsidence of the anchored cage more than 3 mm into adjacent vertebral bodies in term of 24 months after ACDF occurred in 13 motion segments (8.2%). CS had no significant impact on CobbS value in that period ($P=0.2005$). In all cases, CS was found in the ventral portion of the motion segment. Number of treated motion segments in the patient had no significant impact on the incidence of CS ($P=0.7692$).

The average preoperative value of CobbG was 7.5° with more lordotic values being observed in male patients, however, this difference was not statistically significant. Patients aged 55 years and more presented with a significantly higher average value of the CobbG than younger patients ($P=0.0178$). Osteoporotic patients also presented with a significantly higher preoperative CobbG than patients without this particular comorbidity ($P=0.0011$). In the early postoperative period, the average value of CobbG was increased by 34.8%. In contrast to female patients, in the male group we observed a significant early decrease of the CobbG ($P=0.0014$). Age, osteoporosis and number of operated segments did not affect the early postoperative GSP ($P=0.05$). Six weeks after the ACDF, the average CobbG was increased by 8.8%, 3 months postoperatively the early obtained average value of CobbG decreased by 2.8%. The average CobbG was later increased by 21.6% after 6 postoperative months and by 8.6% after 12 postoperative months. 24 months after the ACDF the average CobbG was larger by 1.8% only compared to early postoperative findings, but increased by 25.7% compared to preoperative findings. After a 1-level ACDF the global lordosis was subsequently lost. In contrast, the global lordosis increased in the further postoperative period after the 2-level ACDF compared with the early postoperative values, however these differences were not significant ($P=0.05$). The female patients present with an increase in average postoperative CobbG, while an opposite trend was recorded in male patients. These differences were significant at 6 weeks, 3 months and 6 months after the ACDF ($P<0.0298$), but not significant in the following period ($P=0.05$). In osteoporotic patients, the early rec-

<table>
<thead>
<tr>
<th>Time period after ACDF</th>
<th>Correlation between CobbS a CobbG (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>first 48 h</td>
<td>0.281</td>
</tr>
<tr>
<td>6 weeks</td>
<td>0.238</td>
</tr>
<tr>
<td>3 months</td>
<td>0.408</td>
</tr>
<tr>
<td>6 months</td>
<td>0.322</td>
</tr>
<tr>
<td>12 months</td>
<td>0.271</td>
</tr>
<tr>
<td>24 months</td>
<td>0.278</td>
</tr>
</tbody>
</table>

Table 3. Correlation between SSP and GSP development after ACDF according to Pearson’s coefficient.
ognised global lordotisation was significantly decreased at 12 months after the ACDF ($P=0.0354$), the differences were, however, not significant during the other imaging controls ($P=0.05$). Patient age did not significantly affect the dynamics of the average postoperative CobbG in 6 weeks to 24 months after the ACDF ($P=0.05$).

In the early postoperative period both global and segmental lordotisation was increased. However, in the further postoperative X-ray controls the segmental lordotisation was observed to be decreasing while the GSP did not follow this trend (Fig. 3). 24 months after the ACDF the average value of the CobbS was lower than the preoperative value. In contrast the average CobbG was still increased. The correlation between the values of the CobbS and CobbG was moderate at 3 and 6 months postoperatively and weak in 6 weeks, 12 and 24 months after the ACDF (Table 3).

DISCUSSION

In our study, a single type of an anchored zero profile interbody cage was used, specifically Zero-P VA®. This implant is fixed by inserting two divergently directed screws introduced into the adjacent vertebral bodies. The cage design assumes an elimination of disadvantages of the conventional cervical plates and maintenance of their benefits. Stated advantages of anchored interbody cages include a reduction of postoperative adhesions, reduction of postoperative dysphagia, smaller surgical approach, shorter duration of surgery and a prevention of adjacent segment ossification when compared to those after the use of cages fixed by the conventional plate.

We observed an early lordotisation of the treated motion segment, which was more significant after 1-level ACDF. During the further postoperative period, a reduction of the surgically-acquired segmental lordotisation occurred. The change was however not affected by factors such as gender, age, osteoporosis or number of treated segments. The design of the interbody cage used in our study (Zero-P VA®) is similar to that of a Zero-P® implant. A number of studies describe a loss of surgically-acquired segmental lordotisation after the implantation of Zero-P® cage. Fixation of Zero-P VA® cage (similar to the Zero-P® cage) is provided by using divergent screws and causes a certain degree of segmental distraction in the ventral portion of the treated motion segment, especially during the early postoperative period after ACDF. A greater lordotising effect therefore occurs compared to the one obtained by a cage fixation with the conventional plate. Also, when the conventional plate is used, a compression of the ventral portion of intervertebral space occurs, causing a reduction of the segmental lordotic profile. During the further postoperative period the surgically-acquired segmental lordotisation tends to reduce due to the effect of axial loading and also due to a lower biomechanical stability of anchored cages, especially in anteflexion and retroflexion. When a conventional cervical plate is used for stabilisation, the physiological mechanical load-
the surgery. Risk factors associated with the loss of the surgically-acquired global lordositation are male gender and osteoporosis.

Acknowledgement: This work was supported by project: The application of PACS (Picture Archiving and Communication System) in the research and development. ITMS 2621020004.

Author contributions: RO, MH, PS, RH, BK: performed literature searches and participated in manuscript writing; RO, MH, MB: made revisions and gave final approval of the manuscript; BK: was responsible for sending the final version.

Conflict of interest statement: Authors state that there are no conflicts of interest regarding the publication of this article.

REFERENCES