OSTEOBLAST AND GINGIVAL FIBROBLAST MARKERS IN DENTAL IMPLANT STUDIES

Veronika Pivodovaa*, Jana Frankovaa, Jitka Ulrichovaa,b

a Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
b Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc
E-mail: veronika.pivodova@gmail.com

Received: February 4, 2011; Accepted: March 3, 2011

Key words: Osteoblasts/Gingival fibroblasts/Extracellular matrix proteins/Dental implants

Background. Dental implants are a suitable option for the replacement of some or all missing teeth. Their main function is to secure the stability of the artificial tooth. The implant material interacts with several cell types including osteoblasts, gingival fibroblasts, periodontal ligament fibroblasts and monocytes. The most common material used is pure titanium which is corrosion resistant and has an elasticity modulus similar to that of bone. In recent years, diverse modified titanium surfaces have also been developed. The wound healing around the implant is a complex process that determines how well the host can heal and accept the implanted material. For this reason, search for markers of the biocompatibility of these new materials is paramount. To identify markers found to be suitable for studying the biocompatibility of dental implants.

Conclusions. The surface of dental implant material should enhance firm attachment of the implant to junctional epithelium, soft connective tissue and bone. For the purposes of dental implant biocompatibility studies, a number of markers produced by osteoblasts or by cells of periodontal ligament have been proposed. In general, the most typical markers for osteoblasts and fibroblasts are alkaline phosphatase and collagen I, respectively. The involvement of both cell types in the inflammatory response is primarily evaluated by determination of tumour necrosis factor α and proinflammatory interleukins.
macromolecules, such as collagens, glycosaminoglycans and various non-collagenous proteins.

An important function of the root cementum is to invest and anchor the principal periodontal ligament fibres which spin like a meshwork between the root and alveolar bone, to the root. In addition, the cementum participates in the maintenance of occlusal adaptation, repair of root defects after resorption or fracture and, protection of the pulp.

Periodontal tissue is mainly inhabited by gingival fibroblasts (GF) and periodontal ligament fibroblasts (PDLF) (ref. 11). Gingival fibroblasts have an important role in the development, function and regeneration of the tooth-support structures (Lipskaja et al. 2003). They are also involved in the production and maintenance of the connective tissue matrix. It is these cells that are responsible for the overall production and turnover of the extracellular matrix. Gingival fibroblasts maintain the synthesis and integrity of the gingival connective tissues. However, the fibroblasts have additional specialized functions as they are involved in the repair, remodeling and regeneration of the adjacent alveolar bone and cementum.

The bone

Bone is a dense tissue, containing three types of cells, i.e. osteoblasts, osteocytes, and osteoclasts. Osteoblasts are responsible for bone formation and osteocytes are the mature osteoblasts that have become entrapped in the deposited bone matrix. The function of osteoclasts is to break down the bone matrix. Polarized mature osteoblasts secrete and deposit most bone matrix proteins. After implantation, osteoblasts adhere to the surface of the implant and mediate its strong fixation in a process called osseointegration. Osseointegration provides a direct structural and functional connection between ordered, living bone and the surface of a load carrying implant. Therefore, in vitro studies with osteoblasts isolated from bone can offer insight into the biological performance of bone implant materials.

Cell models for in vitro studies

The biocompatibility of dental implants can be studied using various cell models. Well-established primary cultures include human gingival fibroblasts, alveolar fibroblasts and human osteoblasts. Besides the primary cultures, in vitro studies often utilize cell lines such as human osteoblast-like cells Saos-2 or human osteosarcoma cell line MG-63. In addition, more complex in vitro models consisting of two cell types are used. These co-cultures combine, for instance, certain types of bone cells, such as MG-63 cells or oste progenitor cells, with human umbilical vein endothelial cells or other types of endothelial cells.

MARKERS FOR DENTAL IMPLANT STUDIES

Cell-matrix interactions depend on cytoskeletal organization, transmembrane integrin receptor expression and, most importantly, on the nature of the extracellular matrix. In bone and in periodontium, the extracellular matrix is composed of proteins such as collagen, fibronectin, laminin, osteopontin, osteonectin, alkaline phosphatase and other specific glycoproteins. The extracellular matrix is crucial in mediating cell adhesion to implanted materials since its organization and production modulates the degree of cell attachment to the materials. The success of non-biodegradable implants will depend primarily on biocompatibility, followed by the capacity of the surface topography of the implants to evoke desired cell matrix, surface-cell matrix interactions.

Proteins involved in the healing process

Tenascin

Tenascin is an extracellular matrix glycoprotein whose expression is regulated by growth factors such as TGF-β (ref. 22, 23) and by mechanical stress. It is expressed during normal processes such as wound healing, nerve regeneration, tissue involution and in pathological states including vascular diseases and tumorogenesis. In dental tissues, tenascin is involved in the differentiation of odontoblasts. These cells form the inside surface of the tooth and separate it from the cavum pulpa. Tenascin may thus also be associated with secondary dentine elaboration when pulp cells differentiate into odontoblasts in response to physical stimuli.

Fibronectin (FN)

Fibronectins are heterodimeric adhesive glycoproteins (220 kDa) composed of two large subunits. They are expressed by many cell types, epithelial, endothelial and mesenchymal. The soluble form of fibronectin circulates in the blood and other body fluids. All the other forms assemble on the surface of cells and are deposited in the ECM as the highly insoluble FN. Fibronectin has been implicated in a variety of cell functions, including adhesion, migration, growth and differentiation. It is also found in association with dental basement membrane during tooth formation, polarization and differentiation of odontoblasts. Fibronectin is considered to play important roles in the maintenance of normal tissue order and in interface interactions, since it mediates cell-matrix interactions, recognizing different cell types as well as bacteria. Fibronectin is also organized in focal adhesions which participate in cell locomotion and in cell adhesion.

Collagens

The production of collagen is a key part of the formation of new connective tissue, a process critical to the durable performance of the implanted device. Periodontal ligament, gingival fibroblasts and osteoblasts produce collagens I and III (ref. 26). Collagen I, one of the earliest osteoblast markers found, is upregulated in committed osteoprogenitors and its deposition as extracellular matrix appears to be a relatively early event in the osteoblast differentiation pathway. Collagen I is one of the major components of gingival connective tissue. Collagen I is known to contribute to rapid regeneration of bone defects.
Collagen III that constitutes 43% of total collagen62 may have an important function in the elasticity of the tissues43, whereas collagen I is believed to maintain tissue architecture44. Although collagens are the main organic components of dentine 80-90% (ref.45), no collagen III is found in dentine30,46,47.

Osteonectin (ONEC) and osteopontin

Osteonectin and osteopontin are adhesive glycoproteins specifically localized in the mineralized ECM of bone50,49 and synthesized primarily by osteoblasts, endothelial cells and megakaryocytes. Osteonectin and osteopontin are major noncollagenous proteins of bone50. Both are responsible for the regulation of bone mineralization, since they promote the deposition of calcium phosphate50,51,52 and inhibit the growth of hydroxyapatite crystals13,54.

Alkaline phosphatase (ALP)

Alkaline phosphatase, a glycoprotein belonging to a family of proteins anchored to the plasma membrane via glycosylphosphatidylinositol linkage57,59, catalyses the hydrolysis of phosphate esters in alkaline pH. ALP is a common biochemical marker used to assess osteoblast differentiation and is considered to be involved in skeletal mineralization60,61. ALP is abundant in matrix vesicles which play a role in extracellular matrix processing and calcification of bone. The levels of ALP are increased just before mineralization is initiated. This aside, the precise role of ALP in mineralization remains unclear. It may be related to its calcium-binding action, generation of free phosphate, or degradation of mineralization inhibitors63,62,67. Increased levels of alkaline phosphatase activity have also been reported as one of the phenotypic changes of fibroblasts in wounds and inflammation59,63,64.

Receptor activator of nuclear factor-κB (RANK), receptor activator of nuclear factor-κB ligand (RANKL), parathyroid hormone (PTH) receptor, osteoprotegerin

Receptor activator of nuclear factor κB ligand (RANKL) is a member of the TNF receptor family and functions as a specific receptor for RANK. Osteoblasts express RANKL as a membrane-associated factor, while RANK is expressed by osteoclast progenitors and matured osteoclasts. Interaction of RANK with RANKL induces differentiation of pre-osteoclasts to osteoclasts63,64. In contrast, soluble RANK, also called osteoprotegerin (OPG), strongly inhibits osteoclast formation. The RANKL/OPG ratio is critical in the pathogenesis of bone diseases that result from increased bone resorption65. Expression of RANKL by osteoblasts arises during the action of osteotropic factors including parathyroid hormone (PTH), prostaglandin E2 and interleukin-11. It has been shown in various models that the PTH receptor increases bone mass when given intermittently but reduces bone mass when infused continuously. Consistently, PTH plays an important role in the regulation of osteoblast number and bone volume, presumably by decreasing osteoblast apoptosis59,55,68.

Laminin-5

Laminin-5 plays an important structural role in the formation of hemidesmosomes, junction structures that serve to attach cells to underlying substrate. Hemidesmosomes ensure efficient attachment of epithelial cells to a variety of natural substances, including the enamel of the tooth and to implant material such as titanium and ceramics. \textit{In vitro}, epithelial cells adhere more readily to laminin-5 than to other extracellular matrix elements, including laminin-1, laminin-2 and fibronectin, presumably due to enhanced hemidesmosome formation. Increased attachment, spreading and hemidesmosome formation of epithelial cells on laminin-5 passivated titanium indicate enhanced integration of tissue and metal and thus predict significant utility of this molecule for the long-term stabilization of implants69.

Bone sialoprotein (BSP)

Bone sialoprotein is one of the major calcium binding, non-collagenous glycosylated phosphoproteins in the extracellular matrix of mineralized tissues such as bone and dentine. BSP belongs to the small family of integrin-binding ligand N-linked glycoproteins. It is expressed by several cell types associated with mineralized tissues but is produced in abundance by osteoblasts. The molecule of BSP is linear with little secondary structure. However, the protein is highly flexible, containing spatially segmented motifs that can bind several ECM constituents with diverse biological roles, including collagen, matrix metalloproteinases, hydroxyapatite, as well as integrins present in numerous cell types. \textit{In vitro} experiments with bone derived osteoblasts and bone marrow cells have revealed that BSP not only stimulates calcification of newly synthesized organic matrix but also promotes cell proliferation and expression of osteoblastic phenotypes, suggesting that BSP may play a role in osteoblast differentiation and the onset of mineral formation70,71.

Adhesion proteins

Local stabilization of the implanted material requires strong adhesion of cells on the material surface. Cell adhesion to the extracellular matrix plays a fundamental role in regulation, cell differentiation, growth, and survival. Cell adhesion to both extracellular matrix and synthetic surfaces is dependent on integrin-mediated signal transduction and cytoskeletal proteins that form complexes known as focal adhesions. These complexes couple focal adhesion kinase (FAK), vinculin, integrins and actin filaments. Thus, focal contacts are sites of more or less stable connections between intra- and extracellular fibre systems1,72,73.

Integrins

Integrins are one of the major families of the cell adhesion receptors74. Each integrin is a heterodimer consisting of an independent α subunit and β subunit75 (see Fig. 1).

Both subunits are transmembrane proteins with their cytoplasmic domains attached to the cytoskeleton76. To date, 16 α subunits and 9 β subunits are recognized.
However, only specific combinations of α and β subunits may form integrin heterodimers. Integrins interact with the ECM through their extracellular domains and with components of the cytoskeleton and various signaling molecules through their intracellular domains. Through these interactions, integrins can regulate many cellular functions such as cell adhesion, motility, shape, growth and differentiation.

The expression of integrin in osteoblastic cells has been intensively studied. Osteoblasts have been shown to express a wide variety of integrins, including integrin subunits α1, α2, α3, α4, α5, α6, αv, β1, β3, and β5.

A characteristic feature of most integrin receptors is their ability to bind an array of ligands. Moreover, many extracellular matrix and cell surface adhesion proteins bind to multiple integrin receptors.

![Fig. 1. The basic structure of the integrin.](image)

Vinculin

Vinculin is a membrane-cytoskeletal protein. It forms a linkage between integrin adhesion molecules and actin cytoskeleton in focal adhesion plaques, and thus participates in regulation of both cell-cell and cell-extracellular matrix junctions. Vinculin contains a “head” domain, a “tail” and a proline-rich hinge region. The head domain binds to actin-binding proteins, talin and α-actinin, whereas the tail domain binds to F-actin and paxillin (see Fig. 2). Moreover, intramolecular head-tail interactions may occur in the vinculin molecule. However, another molecule of vinculin enables the interactions between N- and C-terminal domains, and the resulting conformational changes activate vinculin and allow it to bind to F-actin. The importance of vinculin for the structure and function of focal adhesions was confirmed by microinjection of the vinculin binding site. This targeted the vinculin within the cells, disrupted vinculin interactions with talin and α-actinin and thus disassembled focal adhesions.

![Fig. 2. The domain structure of vinculin and interacting partners (modified according to ref.85).](image)

Proteins associated with the inflammatory response

Periodontal disease is a disorder of the oral connective tissues affecting the gingiva, periodontal ligament and alveolar bone. Gingivitis is characterized by inflammation of the gingival tissue around the teeth, while periodontitis includes loss of connective tissue, including the periodontal ligament and alveolar bone. Inflammatory markers i.e. cytokines, matrix metalloproteinase and growth factors serve for determination of inflammation.

Cytokines

Cytokines are proteins secreted by various cells and mediate many cellular functions. Among others, they function as intercellular messengers essential for the pathogenesis of many diseases including peri-implantitis. In periodontology and implantology, cytokines are involved in inflammation-related alteration and repair of periodontal or peri-implant tissues.

Tumor necrosis factor-alpha (TNF-α)

TNF-α is a potent osteoclastogenesis agent secreted by various cells, gingival fibroblasts and fibroblasts of the periodontal ligament. It has been implicated in the bone loss and connective tissue destruction associated with periodontal disease. This aside, TNF-α functions as a pro-inflammatory mediator stimulating production of matrix metalloproteinases (MMPs) and contributing to the development of such diseases as rheumatoid arthritis, periodontitis and multiple sclerosis. TNF-α is also the main cytokine mediating response to gram-negative bacteria where the concentration of TNF-α reflects the amount of bacteria and stage of inflammation.

Interleukins and chemokines

IL-6 is produced by fibroblasts and its expression is increased at diseased periodontal sites including inflamed gingiva. IL-6 stimulates bone resorption presumably by
Matrix metalloproteinases (MMPs)

MMPs are produced by the cells of the connective tissue, e.g. fibroblasts, osteoblasts and odontoblasts synthesize and secrete MMPs into the ECM. In the ECM, MMPs are responsible for the degradation of extracellular matrix components during physiological processes such as morphogenesis, wound healing and cell migration. Levels of IL-8 mRNA and protein have been found elevated in chronically inflamed gingival tissue as well as in gingival crevicular fluid from patients with periodontitis. Through the production of cytokines, such as IL-6 and IL-8, fibroblasts and epithelial cells act as accessory immune cells and contribute to periodontal destruction.

MMP Characteristics

<table>
<thead>
<tr>
<th>MMP</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMP-1,-8,-13,-18</td>
<td>collagenases</td>
</tr>
<tr>
<td>MMP-2,-9</td>
<td>gelatinases</td>
</tr>
<tr>
<td>MMP-3,-10,-11</td>
<td>stromelysins</td>
</tr>
<tr>
<td>MMP-14,-15,-16,-17,-24,-25</td>
<td>transmembrane</td>
</tr>
<tr>
<td>MMP-7,-26</td>
<td>matrilysins</td>
</tr>
</tbody>
</table>

Table 1. Characteristics of all known MMPs (ref.102).

Growth factors

Regeneration of periodontal tissue is regulated by transforming growth factor-α (TGF-α) and transforming growth factor-β (TGF-β). TGF-α regulates angiogenesis, while TGF-β stimulates collagen I, fibronectin and osteonectin synthesis as well as bone matrix formation and basic fibroblast growth factor (bFGF). TGF-β is known to be expressed during the implantation process and contributes to implant osseointegration. TGF-β has been also implicated in reparative dentinogenesis in the pulp.

Epidermal growth factor (EGF) stimulates a variety of biological actions including proliferation and differentiation of epithelial and mesenchymal cells and plays a central role in inflammatory and immunological responses. In the periodontal tissues it is expressed by human periodontal ligament and gingival fibroblasts, junctional epithelial cells and alveolar bone cells. The expression of EGF might be different in periods of periodontal destruction quiescence and wound repair. EGF increases the expression of both MMP-1 and -3 in gingival fibroblasts.

CONCLUSION

Dental implants are an ideal option for people in overall good oral health who have lost a tooth or teeth due to periodontal disease, injury or for some other reason. The success of dental implants, i.e. the ability to support a dental restoration, is critically dependent upon how much bone is available at the implant site. The biocompatibility of the implant itself is determined by both the physical and chemical characteristics of the material and particular features of implant surface, such as the thickness of the oxide layer, microstructure and porosity. The surface of the dental implant material should enhance firm attachment of the implant to junction epithelium, soft connective tissue and bone. In summary, a number of markers produced by osteoblasts or by cells of periodontal ligament have been proposed for testing the dental implant biocompatibility, e.g. integrins, vinculin, alkaline phosphatase, collagen I and inflammatory cytokines. The most typical markers for osteoblasts and fibroblasts are alkaline phosphatase and collagen I, respectively. The involvement of both cell types in the inflammatory response is evaluated by determination of tumour necrosis factor α and proinflammatory interleukins.
ABBREVIATIONS

ECM, Extracellular matrix; PDL, Periodontal ligament; PDLF, Periodontal ligament fibroblasts; MG-63, Human osteosarcoma cell line; FN, Fibronectin; Col, Collagen; ALP, Alkaline phosphatase; RANKL, Receptor activator of nuclear factor; PTH, Parathyroid hormone; OPG, Osteoprotegerin; BSP, Bone sialoprotein; IL, Interleukine; TNF-α, Tumor necrosis factor alpha; MMPs, Metalloproteinases; TGF, Transforming growth factor; bFGF, Basic fibroblasts growth factor

ACKNOWLEDGEMENT

Supported by the grant No. MSM 6198959216, GACR 303/09/H048, LF_2010_022 and CZ.1.05/2.1.00/01.0030

REFERENCES

60. Harris H. The Human Alkaline-Phosphatases - What We Know and What We Dont Know. Clinica Chimica Acta 1990;186:133-150.

81. Bois PR, O’Hara BP, Nieltsch D, Kirkpatrick J, Izard T. The vinculin binding sites of talin and alpha-actinin are sufficient to
87. Petkovic AB, Matic SM, Stamatovic NV, Vojvodic DV, Todorcevic TM, Lazic ZR, Kozomara RJ. Proinflammatory cytokines (IL-1β and TNF-α) and chemokines (1L-8 and MIP-1α) as markers of peri-implant tissue condition. International journal of oral and maxillofacial surgery 2010;10.