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Unveiling the predictive power of biomarkers in traumatic brain injury:  
A narrative review focused on clinical outcomes

Sitao Liang, Zihui Hu

Traumatic brain injury (TBI) has long-term consequences, including neurodegenerative disease risk. Current diagnostic 
tools are limited in detecting subtle brain damage. This review explores emerging biomarkers for TBI, including those 
related to neuronal injury, inflammation, EVs, and ncRNAs, evaluating their potential to predict clinical outcomes like 
mortality, recovery, and cognitive impairment. It addresses challenges and opportunities for implementing biomarkers 
in clinical practice, aiming to improve TBI diagnosis, prognosis, and treatment. 
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BIOMARKERS IN TRAUMATIC BRAIN INJURY

This graphical abstract shows the diverse TBI biomarkers involved in key processes such as neuronal and glial
injury, axonal damage, inflammation, and molecular signaling via extracellular vesicles and non-coding RNAs.

Liang S, Hu Z., doi: 10.5507/bp.2024.038

INTRODUCTION

Traumatic brain injury (TBI) results from external 
forces impacting the brain, often involving direct trauma, 
acceleration/deceleration, or rotational forces. This com-
plex interplay generates inertial forces that disrupt brain 
tissue and cells, leading to a cascade of neurological dys-
function1. TBI is a major public health concern, with the 
highest incidence among common neurological disorders, 
and poses a substantial global burden. Although tradi-
tionally seen as an acute condition, TBI is increasingly 
recognized for its chronic effects, including a higher risk 
of neurodegenerative diseases2. In 2019, there were 27.16 

million new cases and 48.99 million prevalent cases of 
TBI, leading to 7.08 million years lived with disability 
(YLDs) (ref.3). Despite moderate-to-severe TBI often 
causing lasting functional impairment, outcomes vary 
widely among individuals with similar injuries, ranging 
from full recovery to severe disability or death4,5. This vari-
ability underscores the need for individualized treatment 
strategies, recognizing the unique patterns of impairments 
and their evolution over time5.

TBI is not a singular event but a complex cascade of 
pathological processes. The initial impact triggers a chain 
reaction of secondary injuries, characterized by molecular 
and cellular responses that persist long after the initial 
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trauma. These secondary injuries lead to neuronal and 
astroglial damage, axonal disruption, and inflammation, 
ultimately contributing to the long-term consequences of 
TBI. Understanding these intricate processes is crucial for 
developing effective neuroprotective and therapeutic inter-
ventions6. Currently, TBI diagnosis relies on the Glasgow 
Coma Scale (GCS), a clinical assessment tool that classi-
fies TBI severity based on the patient’s level of conscious-
ness. The GCS categorizes injuries as severe (GCS 3–8), 
moderate (GCS 9–13), and mild (GCS 14–15) (ref.7). 
However, despite the use of advanced imaging techniques 
like CT and MRI, predicting long-term outcomes remains 
challenging. These methods often fail to detect diffuse 
axonal injury (DAI), a common TBI characterized by 
widespread shearing of nerve fibers, which significantly 
impacts long-term prognosis8. Biomarkers offer a promis-
ing avenue for improving TBI diagnosis, prognosis, and 
treatment monitoring. They can reveal injury-induced cel-
lular, biochemical, and molecular changes, often detecting 
early microlesions that conventional imaging techniques 
miss9. By integrating biomarkers with clinical examination 
and imaging, clinicians can achieve more accurate severity 
assessment, predict outcomes more reliably, and evalu-
ate treatment responses effectively10. The development of 
reliable biomarkers is crucial for early and accurate TBI 
diagnosis, paving the way for timely and effective inter-
ventions. The absence of such biomarkers currently limits 
our ability to provide optimal care for patients with TBI.

This narrative review aims to explore the predictive 
power of biomarkers in TBI, focusing on their ability to 
forecast clinical outcomes. We will examine the current 
landscape of biomarker research, analyzing biomarkers 
related to neuronal injury, inflammation, extracellular 
vesicles, and non-coding RNAs. We will critically evalu-
ate the evidence on their predictive value for clinical out-
comes, such as mortality, functional recovery, long-term 
disability, and cognitive impairment. Additionally, we will 
discuss the challenges and opportunities associated with 
biomarker use in clinical practice and provide recommen-
dations for future research. By synthesizing current knowl-
edge and highlighting future directions, this review seeks 
to illuminate the potential of biomarkers as valuable tools 
for improving TBI diagnosis, prognosis, and personalized 
treatment strategies.

BIOMARKERS IN TRAUMATIC BRAIN INJURY:  
A DIVERSE LANDSCAPE 

TBI can be classified as mild, moderate, or severe. 
Mild TBI (mTBI), often caused by head impacts result-
ing in rotational acceleration of the brain, can also occur 
without direct impact, such as in motor vehicle crashes 
with rapid head rotation. While mTBI typically does not 
produce visible brain damage, it can lead to rapid neuro-
physiological and neurological dysfunction that often re-
solves quickly. However, persistent cognitive dysfunction 
can occur in up to 15% of individuals11-13.

TBI pathogenesis involves two distinct phases: the 
primary injury, occurring immediately upon impact, 

and the secondary injury, encompassing the body’s at-
tempts to limit and repair the damage14,15. The initial im-
pact causes necrosis, tissue deformation, and shearing of 
neurons, axons, and glial cells, leading to excitotoxicity, 
oxidative damage, and cerebrovascular disturbances16. 
Complications include reduced mitochondrial respiration, 
lipid damage, activation of apoptotic and non-apoptotic 
cell death pathways, and initiation of inflammatory and 
protein degradation cascades17,18. The initial injury also 
disrupts the blood-brain barrier (BBB), increasing perme-
ability and allowing further cellular damage and inflam-
mation19,20. TBI-induced injury disrupts cerebral vascular 
autoregulation, leading to an imbalance between cerebral 
blood flow and metabolism, resulting in cerebral oxygen 
deprivation (ischemia). This triggers mitochondrial dys-
function, increased lactate levels, elevated intracellular 
calcium (Ca2+) ions, and reduced ATP production, con-
tributing to the failure of ATP-dependent ion pumps and 
impaired glutamate uptake21. The initial injury sets off a 
cascade of secondary events, initiated by the release of 
glutamate from damaged neurons. Glutamate triggers ede-
ma, pro-inflammatory cytokine release, and further isch-
emia, perpetuating the cycle of damage1,16. TBI-induced 
metabolic changes affect amino acid, carbohydrate, and 
lipid metabolism, impacting both brain and other organ 
functions22. These complex processes manifest in a range 
of clinical symptoms, from motor deficits to debilitating 
neurocognitive and personality changes23.

An ideal and reliable fluid biomarker for TBI, as pro-
posed by Wang et al.6, should possess several key charac-
teristics to be truly effective. First, it should be released 
upon injury, meaning that head trauma triggers its release 
into readily accessible bodily fluids, allowing for non-in-
vasive detection. Second, the biomarker should exhibit 
elevated levels in TBI patients compared to healthy indi-
viduals. Third, its concentration should correlate with the 
severity of the TBI, both quantitatively and qualitatively. 
Finally, the biomarker’s levels should align with findings 
from other clinical diagnostic tools, such as the Glasgow 
Coma Scale (GCS), CT scans, and MRI. Fig. 1 provides 
an overview of diverse TBI biomarkers, each reflecting 
a specific aspect of the injury process. These biomark-
ers encompass markers of neuronal, axonal, myelin, and 
glial cell damage, inflammatory responses, extracellular 
vesicles, and a variety of non-coding RNA species.

Neurological biomarkers in traumatic brain injury
A range of protein biomarkers have emerged as po-

tential indicators of TBI, each reflecting damage to spe-
cific neurological structures. These include markers for 
dendrites (MAP2), neuron cell bodies (UCH-L1, NSE), 
axons (pNF-H, SBDPs, Tau protein), myelin (MBP), 
synapses (neurogranin, synaptogranin), astroglia (GFAP, 
S100B), and autoantibodies (anti-GFAP) (Table 1) (ref.6). 
The persistence of these biomarkers in blood and cerebro-
spinal fluid (CSF) varies. Some, like S-100B and GFAP, 
show acute elevations and typically return to baseline lev-
els within days, while others, such as Tau protein, exhibit 
persistent aberrations correlating with long-term sequel-
ae following TBI (ref.6,24). Tau, a microtubule-associated 
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Fig. 1. Summary of the different types of TBI biomarkers that denote many processes such as neuronal injury, glial injury, axonal 
injury, inflammation, extracellular vesicles, and various non-coding RNAs. 
NSE, Neuron-specifc enolase; UCH-L1, Ubiquitin C-terminal hydrolase-L1; SBDPs, α-II-spectrin breakdown products; NFs, 
Neurofilament proteins; MBP, Myelin basic protein; GFAP, Glial fibrillary acidic protein; S100B, S100B calcium binding protein 
B; LncRNA, Long non-coding RNA; MiRNA, MicroRNA; CircRNA, Circular RNA; EV, extracellular vesicle.

protein encoded by the MAPT gene, plays a crucial role 
in maintaining microtubule stability within the axonal 
cytoskeleton25,26. Recent research has focused on total 
Tau and phosphorylated Tau, noting their elevated levels 
following TBI and their correlation with injury severity 
and long-term outcomes, particularly within six months 
post-injury27.

Inflammatory biomarkers in traumatic brain injury
TBI triggers neuronal inflammation, leading to altera-

tions in neuronal function72. This process involves the re-
lease of chemical mediators, including cytokines, which 
are produced by various cells73,74. Cytokine production 
often occurs in a cascade, where one cytokine stimulates 
target cells to produce additional cytokines, amplifying 
the inflammatory response75. As intercellular messen-
gers, cytokines bind to receptors on target cells and ini-
tiate specific responses74. Inflammatory responses play 
a complex role in recovery following TBI. While essen-
tial for removing damaged neurons and initiating repair 
processes, prolonged inflammation can lead to excessive 
neuronal damage, contributing to long-term neurological 
deficits76,77. Understanding the balance between benefi-
cial and detrimental aspects of inflammation is crucial 
for developing interventions that minimize unfavorable 
outcomes for TBI patients.

Biomarkers offer insights into the biological process-
es activated by TBI. Neuroinflammation, characterized 
by both beneficial and detrimental effects, is a primary 

focus of biomarker research. Cytokines, primarily pro-
duced by immune cells like monocytes, lymphocytes, 
and macrophages, orchestrate the immune response and 
contribute to tissue repair78. They are categorized as pro-
inflammatory (e.g., IL-1, IL-12, IL-18, IFN-γ, TNF-α) or 
anti-inflammatory (e.g., IL-4, IL-10, IL-13, IFN-α) based 
on their role in immune regulation74. Despite advance-
ments, a significant gap remains in understanding the 
relationship between inflammatory cytokines and long-
term outcomes following TBI. The persistent release of 
pro-inflammatory cytokines contributes to neurodegenera-
tive diseases79. Activated microglia, a type of immune cell 
in the brain, are a chronic source of neurotoxic factors, 
including TNF-α, nitric oxide (NO), IL-1β, and reactive 
oxygen species (ROS), leading to progressive neuronal 
damage. Chronic activation of microglia, whether by a 
single stimulus like lipopolysaccharide or multiple expo-
sures, leads to cumulative neuronal loss over time, impli-
cating them in neurodegenerative conditions80.

Previous research suggested a correlation between 
serum IL-1β levels and TBI severity, GCS score, and 
prognosis81. However, a recent meta-analysis of four stud-
ies involving 439 participants (263 with mTBI and 176 
healthy controls) found no significant difference in blood 
IL-1β levels between cases and controls. Subgroup analy-
sis revealed significantly elevated blood IL-1β levels in 
the acute phase (<7 days) after mTBI, indicating a role 
in the early inflammatory response. However, insufficient 
studies precluded a comprehensive analysis of chronic IL-
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1β levels82. Animal model studies have shown that early 
attenuation of IL-1β-dependent inflammatory signaling 
can prevent capillary damage by promoting pericyte cov-
erage in the thalamus, highlighting the complex role of 
IL-1β in TBI recovery83. Further research is needed to 
fully understand the role of IL-1β and other cytokines in 
TBI progression and long-term outcomes.

IL-6 levels in the blood are elevated after TBI, po-
tentially reflecting injury severity, though its predictive 
value for long-term outcomes remains unclear84. A recent 
meta-analysis by Malik et al.82  indicated that a major-
ity of studies (65%) showed significantly elevated IL-6 
levels in mTBI patients compared to healthy controls82, 
though some studies showed reduced or no significant 
differences85-90. Elevated IL-2 and IL-6 levels in the acute 
phase suggest a role in the early inflammatory response91. 
Elevated IL-6 levels at 6 hours post-mTBI have also been 
associated with the duration of symptoms92-94. Other cy-
tokines, including IL-8, IL-10, and TNF-α, are also pro-
duced in excess after TBI, but their correlation with injury 
severity and long-term outcomes requires further investi-
gation10,84. High serum IL-8 levels have been associated 
with moderate and severe cerebral hypoperfusion in TBI 
patients95. A meta-analysis of IL-8 levels in mTBI found 
variable results, with some studies showing elevated levels, 
others showing reduced levels, and some reporting no 
significant differences82,96-98. Elevated levels of IL-1RA, 
IL-8, and IFN-γ have been observed in mTBI patients, 
particularly within 24 hours, though the limited number 
of studies precluded a comprehensive meta-analysis82.

The rapid and dynamic nature of biofluid biomarkers 
following TBI presents a significant challenge in identify-
ing reliable indicators of injury severity and prognosis. 
Adiponectin, a marker of inflammation, has been found 
elevated in the plasma of TBI patients and identified as 
an independent predictor of poor outcomes and mortal-
ity. Similarly, high-mobility group box 1 (HMGB1), a 
cytokine and marker of inflammation, has emerged as a 
significant predictor of one-year mortality in TBI patients. 
HMGB1 translocates from the nucleus to the cytoplasm 
in the early stages of injury, followed by uptake by phago-
cytic microglia, suggesting HMGB1 may serve as both a 
valuable biomarker and a potential therapeutic target for 
TBI patients40.

Extracellular vesicles and non-coding RNAs in traumatic 
brain injury

Following a TBI, a complex cascade of secondary 
events unfolds, including excitotoxicity, free radical gen-
eration, and a neuroinflammatory response. These pro-
cesses, which begin within minutes and can persist for 
months, contribute significantly to neuronal, glial, and 
vascular damage99. Secondary injuries, particularly neuro-
inflammation, are major determinants of TBI outcomes100. 
The initial injury triggers the release of damage-associ-
ated molecular patterns (DAMPs), activating immune 
responses and triggering the release of pro-inflammatory 
mediators. This, coupled with the activation of microglia 
and astrocytes and the infiltration of peripheral immune 
cells, intensifies the inflammatory response101. This pro-

inflammatory environment is strongly linked to tissue 
damage and poor neurological outcomes102.

Extracellular vesicles
Extracellular vesicles (EVs), secreted by a variety of 

cells, are emerging as vital mediators of cell-to-cell com-
munication, particularly in the central nervous system 
(CNS). Studies highlight their significant impact on 
neuronal differentiation, synaptic formation, glial inter-
actions, and the regulation of homeostatic signaling and 
immune responses103-105. In the context of TBI, EVs play 
a crucial role in neuroimmune interactions, regulating 
neuroinflammation through their diverse cargo, which 
includes DNA fragments, RNA, lipids, and proteins106,107. 
Both the primary and secondary injuries following TBI 
influence the number and characteristics of EVs. For ex-
ample, brain endothelial cells release EVs rich in occludin 
during vascular remodeling in response to mechanical 
injury108. Similarly, oxidative stress and reactive oxygen 
species (ROS) stimulate the release of EVs that regulate 
inflammation and vascular calcification109-111. Additionally, 
microglia activated by lipopolysaccharide (LPS), ATP, 
and pro-inflammatory cytokines (IL-1β, TNF-α, IFN-γ) 
release EVs with a distinct cargo profile, underscoring 
their critical role in neuroinflammation112-114.

TBI and subsequent neuroinflammation also trigger 
the release of astrocyte-derived EVs containing neurotoxic 
proteins and miRNAs, such as elevated levels of miR-21 
in neuron-derived EVs. EVs are not only released locally 
but are also found in other biological fluids after TBI 
(ref.106). For instance, serum EV concentrations increase 
rapidly in TBI patients115,116, and cerebrovenous blood ex-
hibits higher EV levels than arterial blood, suggesting an 
increased release from the brain117. In rodent studies, EVs 
positive for glial fibrillary acidic protein (GFAP+) and 
neuron-specific enolase (NSE+) peak at 3 hours post-TBI 
(ref.118), with GFAP+ EVs decreasing at 6 hours while 
NSE+ EVs remain elevated118.

In the CSF, EVs concentrations double following 
brain injury119. TBI also induces inflammatory changes 
in salivary-derived EVs, which could play a role in inter-
cellular communication. The ability of EVs to cross the 
BBB and their presence in both CSF and peripheral blood 
make them promising biomarkers for TBI, drawing sig-
nificant research interest120. EVs carry information from 
their parent cells, which can be used to identify specific 
disease signatures. For example, elevated levels of Tau, 
amyloid-beta (Ab) 42, and IL-10 have been found in the 
EVs of military personnel with mild TBI, suggesting a link 
to chronic postconcussive symptoms and neuroinflamma-
tion86. Increased levels of phosphorylated Tau (p-Tau), 
neurofilament light (NfL), IL-6, and TNF-α in CNS-
enriched EVs of older veterans correlate with cognitive 
impairment and inflammatory processes121. The molecular 
composition of circulating EVs changes significantly in in-
dividuals with mild TBI. Specific microRNAs (miRNAs) 
associated with inflammation and CNS disorders, such as 
hsa-miR-139-5p and hsa-miR-18a-5p, show marked differ-
ences122. Additionally, TBI alters the protein composition 
of EVs in the CSF, with elevated levels of αII-spectrin 
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breakdown products (BDPs), GFAP, and synaptophysin 
detectable in CSF-derived EVs (ref.119).

Research indicates that flotillin-1, associated with neu-
roregeneration, is uniquely present in the CSF after TBI. 
Moreover, the downregulation of ADP-ribosylation fac-
tor 6 (Arf6) and the delayed upregulation of Ras-related 
protein Rab7a (Rab7a) in the CSF post-TBI are linked to 
poor outcomes123. TBI-induced changes in gene expression 
within salivary-derived EVs also suggest their potential 
as biomarkers for assessing TBI severity124. These find-
ings underscore the significant changes in EVs and their 
molecular cargo in response to TBI, both in the CNS and 
peripheral circulation. The presence of altered EVs in 
biological fluids holds great promise as a diagnostic and 
assessment tool for TBI.

non-coding RNAs
Diagnosing and predicting outcomes for TBI is chal-

lenging due to the varied nature of injuries and individual 
patient differences. Traditional diagnostic methods often 
fall short in addressing this complexity. Advances in EVs 
proteomics have shown promise in cancer research, par-
ticularly through liquid biopsies, and similar potential 
exists for TBI diagnostics36,125. However, a standardized 
and reliable evaluation system for this application is still 
needed. 

Extracellular non-coding RNAs (ncRNAs) are no-
tably resistant to degradation, making them promising 
candidates for stable and specific disease biomarkers126. 
Correlating these biomarkers with clinical parameters 
can provide valuable insights into TBI and recovery, en-
hancing diagnostic accuracy, risk stratification, treatment 
evaluation, prognostic prediction, and the development 
of personalized treatment strategies126,127. Extracellular 
microRNAs (miRNAs) are particularly appealing as TBI 
biomarkers due to their stability and ease of detection. 
Harrison et al.106 showed that miR-21, miR-146, miR-7a, 
and miR-7b were upregulated, while miR-212 was down-
regulated in the brains of TBI model mice. Building on 
this, Ko et al.128 developed a diagnostic method based 
on miRNA expression profiles (miR-129-5p, miR-212-
5p, miR-9-5p, miR-152-5p, miR-21, miR-374b-5p, miR-
664-3p), achieving 99% accuracy in distinguishing TBI 
from controls. Further research by Ko et al.129 highlighted 
substantial overlap between miRNA biomarkers in pre-
clinical models and clinical samples, validating their util-
ity. Puffer et al.130 identified 11 differentially expressed 
miRNAs in the plasma of TBI patients, linking these 
miRNAs to pathways related to injury and development. 
Additionally, extracellular circular RNAs (circRNAs) 
have been implicated in TBI, with studies showing sig-
nificant differential expression in brain cells post-injury, 
with 155 upregulated and 76 downregulated circRNAs131. 
A controlled cortical impact (CCI) model in mice identi-
fied 191 differentially expressed circRNAs in the cortex, 
associated with inflammation, cell death, and repair132. 
While extracellular long non-coding RNAs (lncRNAs) 
are recognized as promising diagnostic markers in neuro-
oncology, their potential in TBI diagnosis is still being 
explored133. Studies have indicated significant changes in 

lncRNA expression following TBI. For instance, Zhong 
et al.134 reported significant alterations in the expression 
of 823 lncRNAs in the mouse cortex after CCI, with 667 
upregulated and 156 downregulated. Similarly, Wang et 
al.135 found 271 differentially expressed lncRNAs in the 
hippocampus of TBI rats. Functional analyses revealed 
that these lncRNAs are significantly enriched in catego-
ries related to inflammation, transcription, apoptosis, and 
necrosis. These findings suggest that extracellularly en-
riched lncRNAs and circRNAs hold significant potential 
as diagnostic biomarkers for TBI. Further exploration into 
their diagnostic utility is warranted136.

Among ncRNAs, miRNAs are particularly signifi-
cant in TBI pathogenesis137,138. Numerous studies have 
highlighted significant changes in miRNA expression 
post-TBI. Table 2 provides a detailed summary of these 
alterations in miRNA expression patterns, their functional 
roles, and potential mechanisms in TBI pathophysiolo-
gy. MiRNAs have gained increasing research interest as 
novel mediators of neuroinflammation in brain trauma 
contexts139,140. During the acute phase of TBI, neuroin-
flammation is triggered in the brain, exacerbating damage 
and leading to neurological deficits141. It is widely recog-
nized that curbing neuroinflammation can improve TBI 
prognosis. Several miRNAs have demonstrated potential 
in reducing neuroinflammation and improving outcomes 
for TBI patients142,143. For example, miR-873a-5p, which is 
upregulated in the brain lesion areas of TBI patients, has 
been shown to reduce microglia-mediated neuroinflam-
mation by inhibiting ERK and NF-κB phosphorylation.  
Treatment of a TBI mouse model with miR-873a-5p re-
sulted in reduced brain damage and edema144. Another 
study demonstrated that increasing miR-23a expression 
suppressed the secretion of inflammatory factors such 
as IL-6, IL-1β, and TNF-α, in a TBI cell model. In a 
mouse model, elevated miR-23a expression reactivated 
the PTEN/AKT/mTOR signaling pathway, improving 
prognosis in the injured brain145.

Further research has demonstrated that the miRNA 
let-7 family member, let-7c-5p, is downregulated in mice 
with TBI. Overexpression of miR-let-7c-5p has been shown 
to mitigate neuroinflammation, decrease microglia/mac-
rophage activation, reduce brain edema, and improve 
neurological function146. Additionally, let-7c-5p mimic 
treatments have been found to inhibit the release of in-
flammatory mediators in primary microglia exposed to 
oxygen-glucose deprivation. Another study identified el-
evated levels of miR-142 and miR-155 in immune and 
glial cells following TBI, indicating their involvement in 
astrocyte activation and the promotion of neuroinflam-
mation in both human and rat models147. In a different 
TBI mouse model, increased levels of miR-146a were 
observed in the brain and serum. Overexpression of miR-
146a through mimics was shown to inhibit the JNK and 
NF-κB pathways, thereby reducing neuroinflammation148. 
Furthermore, miR-21, which has been previously reported 
to be upregulated following TBI, plays a complex role in 
TBI pathology149. MiR-21 is secreted from neurons near 
the injury site and contributes to neuroinflammation 
by activating microglia150. These findings highlight the 
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Table 2. Non-coding RNAs involved in traumatic brain injury.

Non-coding RNA Functions and associated mechanisms in brain injury Ref.

LncRNAs

lncRNA 
MALAT1

–	Modulates inflammation targets in hASC-derived exosomes.
–	Downregulated in TBI models; correlates with edema.
–	Overexpression reduces edema and inflammatory markers.
–	Exosomes with MALAT1 lessen cortical damage and activate MAPK.	
–	Inhibition suppresses angiogenesis by affecting endothelial health.	
–	Regulates angiogenesis via EZH2/NOTCH1.
–	Knockdown increases NR2B levels, causing damage under OGD/R.	
–	Binds and inhibits miR-125b-5p, promoting neuroinflammation.

151–157

lncRNA Meg3 –	Decreased in TBI patients; negatively correlates with cytokines.
–	Regulates microglial inflammation via miR-7a-5p/Nlrp3.

158, 159

lncRNA Gm4419 –	Promotes astrocyte apoptosis during TBI. 
–	Acts as a sponge for miR-466l, upregulating TNF-α.

160

lncRNA HOTAIR –	Involved in microglial activation and inflammation.
–	Regulates MYD88 ubiquitination.

161

lncRNA Neat1 –	Aggravates motor/cognitive functions post-TBI.
–	Inhibits apoptosis/inflammation in TBI cortex.	
–	Knockdown elevates NR2B levels, causing OGD/R damage.

156,162

lncRNA Snhg1 –	Its inhibition increases apoptosis.
–	Reduces HIF-1α/VEGF-A by binding miR-338.

163

lncRNA NKILA –	Decreases proliferation and inhibits apoptosis. 
–	Binds to miR-195 and upregulates NLRX1 levels.

164

lncRNA ZFAS1 –	Its inhibition reduces inflammation, apoptosis; recovers function. 165
lncRNA 
KCNQ1OT1

–	Its downregulation has neuroprotective effects including the damage of brain microvascular 
and neuron loss in TBI mice. 

–	Modulates the miR-873-5p-TRAF6-p38/NF-κB axis. 

166

lncRNA PRR34-
AS1

–	Its downregulation has neuroprotective effects including reducing brain microvascular damage 
and neuron loss.

–	Targets miR-498.

167

lncRNA 
4933431K23Rik

–	Regulates microglial-induced neuroinflammation.
–	Inhibits microglial activation by elevating Smad7 expression.

168

lncRNA GAS5 –	Levels are related to injury severity and inflammation. 
–	Contributes to neuronal apoptosis during TBI. 
–	Modulates the miR-335/Rasa1 axis.

169, 170

lncRNA VLDLR-
AS1

–	Levels lower in rmTBI vs. controls.
–	Correlates with depression symptoms.

171

lncRNA H19 –	Increased in perilesional tissue after TBI; reverts over time.
–	Its knockdown aids recovery, preserves neuronal integrity.
–	Facilitates anti-inflammatory microglial/macrophage phenotypes.
–	Promotes activation of the Nrf2/HO-1 axis.

172

lncRNA TUBB6 –	Key role in neuroprotection via TUBB6/Nrf2 pathway. 173

CircRNAS

circMETTL9 –	Downregulation improves neurological deficits and apoptosis.
–	Activates SND1 in astrocytes.

174

circScmh1 –	Exosomes reduce hippocampal nerve damage.
–	Promotes microglial M2 polarization.

175

circIgfbp2 –	Its inhibition relieves mitochondrial dysfunction.
–	Modulates miR-370–3p/BACH1/HO-1 axis.

176

circPtpn14 –	Important for brain protection by melatonin.
–	Controls 5-LOX expression involved in ferroptosis.

177

circLphn3 –	Improves BBB permeability upon TBI. 
–	Regulates tight junction protein expression after TBI.

178

circ0116449 –	Methylation-related; reduces neuronal loss.
–	Modulates miR-142–3p-NR1D2 axis as a miRNA sponge.

179

circRNA_009194 –	Improves outcomes in rats with TBI. 
–	Regulates the voltage-gated sodium channel Nav1.3 in TBI.

180
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Non-coding RNA Functions and associated mechanisms in brain injury Ref.

circHtra1 –	Promotes neuronal loss and immune deficiency. 
–	Controls miR-3960/GRB10 axis.

181

circLrp1b –	Inhibition reduces inflammation and autophagy in TBI.
–	Regulates miR-27a-3p/Dram2 signaling pathway.

182

circRNA-chr8 –	Plays a pro-inflammatory role in TBI. 
–	Involved in sequestering mmu-let-7a-5p.

183

Hsa_circ_0018401 –	Potential biomarker; binds miR-127-5p, correlates with TBI severity. 184

MiRNAs

miR-212-5p –	Protects against neuron death from iron toxicity. 
–	Negatively regulates Ptgs2, impacts ferroptosis.

185

miR-212, miR-132 –	Its overexpression in BMEC decreases barrier properties.
–	Potential targets: Cldn1, Jam3, Tjap1.

186

miR-132 –	Its overexpression improves repair and clinical symptoms post-TBI.
–	Accelerates neurogenesis and tissue repair.
–	Enhances neuroblast migration, reduces microglia accumulation.

187

miR-146a –	Improves TBI outcomes, downregulates inflammatory cytokines.
–	MiR-146a inhibits the JNK and NF-κB signaling pathways.

148

miR-155 –	Inhibition decreases neuroinflammation, enhances recovery.
–	Regulates NADPH oxidase 2 in microglia/macrophages.
–	Substantial decrease in TBI model; increased BACH1 expression.

188,189

miR-429 –	Inhibition reduces inflammation, brain damage.
–	Targets DUSP1, inhibits pro-inflammatory release.

190

miR-124-3p –	Microglial exosomes improve cognition, reduce degeneration.
–	Targets the Rela/ApoE signaling pathway.
–	Elevated in blood and plasma at 2 d post-TBI vs. controls.
–	Higher levels correlate with larger chronic lesion areas.
–	Exosomes with high miR-124-3p levels reduce apoptosis and ER stress.
–	Binds to IRE1α, reducing its expression and inhibiting ER stress.
–	Transferred from microglia-derived exosomes to injured neurons, providing neuroprotection.

191–195

miR-93, miR-191, 
miR-499

–	Elevated in TBI patients; higher in severe cases.
–	Strong predictive power for trauma cases.

196

miR-21-3p –	Increased in BMVECs post-TBI is detrimental to BBB restoration.
–	Its downregulation may aid BBB recovery.

197

miR-21 –	Upregulation improves outcomes, reduces microvascular injury.
–	Overexpression of miR-21 activates the axis of Ang-1/Tie-2.

198–200

miR-21, miR-92, 
miR-16

–	High predictive power for trauma diagnosis.
–	Potential biomarkers for survival.

201

miR-21, miR-92a, 
miR-874

–	Involved in protective effects of exercise post-TBI. 202

miR-21, miR-124a, 
miR-107

–	Increased at various times post-injury.
–	Linked to inflammatory proteins; inverse relationship with miRNA levels.

203

miR-107 –	Participates in GRN expression regulation. 204
miR-23a –	Its overexpression inhibits neuroinflammation, aids prognosis.

–	Reactivates PTEN/AKT/mTOR pathway inhibited by TBI.
145

miR-23b –	Its overexpression has neuroprotective impact post-TBI.
–	Targets ATG12 to inhibit autophagy.

205

miR-27a –	Overexpression protects brain, suppresses neuroinflammation.
–	Targets FoxO3a, inhibiting its expression.

206

miR-136-3p,  
miR-9-3p

–	Elevated levels distinguish mTBI from naïve rats.
–	Plasma levels higher in sTBI patients.

207

miR-219a-5p –	Discriminates sTBI/mTBI patients, regulates apoptosis.
–	Inhibits CCNA2 and CACUL1, affecting apoptotic pathways.

208

miR-145-3p –	Maintains Th17/Treg balance, reduces inflammation via the miR-145-3p/NFATc2/NF-κB axis. 209
miR-193a –	Its inhibition suppresses the NLRP3 expression and brain injury and neuroinflammation post-

TBI.
210

Table 2. (Continued)
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Non-coding RNA Functions and associated mechanisms in brain injury Ref.

miR-34b –	Trauma-induced anxiety was reduced by miR-34b, which targets CRHR1 to decrease HPA axis 
hyperactivity.

211

miR-433 –	miR-433 expression was lower in patients with tibial fracture and craniocerebral injury com-
pared to controls.

–	miR-433 regulates SPP1 mRNA and protein by binding to its 3‘-UTR.

212

miR-711 –	miR-711 levels increased in the cortex post-TBI and in vitro, due to rapid transcription (pri-
miR-711) rather than catabolism.

–	Increases correlated with downregulation of Akt, activating FoxO3, GSK3α/β, pro-apoptotic 
PUMA, Bim, and mitochondrial release of cytochrome c and AIF.

–	Administration of miR-711 inhibitor post-TBI increased Akt, reduced apoptosis, and decreased 
cortical lesion volume and neuronal loss.

213

miR-302 –	Pulsatile shear stress suppressed miR-302; exogenous miR-302 inhibited ERK1/2 and con-
nexin43 phosphorylation.

–	Elevated miR-302 improved cognitive function and reduced brain damage by decreasing 
edema and contusion volume.

214

miR let-7c-5p –	Its overexpression suppresses inflammatory factor release and microglial activation.
–	Inhibits caspase-3 expression.

146

miR-9-5p –	Contributes to neurological recovery, reduces microvascular damage and neuroinflammation.
–	Activates the Hedgehog pathway and inhibits the NF-κB/MMP-9 pathway.

215

miR-17-92 cluster –	Exosomes enriched with miR-17-92 reduce neuroinflammation and enhance angiogenesis and 
neurogenesis, improving TBI recovery.

216

miR-22 –	Provides neuroprotection by reducing damage and apoptosis in neuronal cells post-TBI.
–	Regulates apoptosis factors (BCL2, p-AKT1, BAX) and the PTEN/AKT signaling pathway.

217

miR-31 –	Overexpression inhibits neuronal cell apoptosis in TBI in vitro.
–	Regulates the HIF-1A/VEGFA axis to reduce neuronal cell death.

218

miR-141–3p –	Ursolic acid regulates miR-141–3p to reduce TBI-induced apoptosis, oxidative damage, and 
inflammation.

–	In TBI mice, ursolic acid activates the PI3K/AKT pathway via miR-141–3p regulation.

219

miR-223–3p –	Influences sex-specific neuroinflammation post-TBI and inhibits neurite elongation.
–	Targets Armcx1 and is negatively correlated with its expression.

220, 221

miR-330–5p –	Reduces inflammatory cytokines and restores motor function in TBI rats.
–	Promotes anti-inflammatory microglia polarization via Ehmt2-mediated CXCL14 transcrip-

tion.

222

miR-15a/16-1 –	Intranasal delivery of the antagomir mimicked the protective effects of genetic deletion, 
improving sensorimotor and cognitive outcomes, enhancing white/gray matter integrity, and 
reducing inflammation compared to control antagomir-treated mice post-TBI.

223

miR-9a-5p –	Poorly expressed in the brain tissue of rats with TBI. 
–	ELAVL1 is a downstream target of miR-9a-5p, negatively regulating its expression.
–	Increased miR-9a-5p expression protects against brain tissue damage in TBI rats by targeting 

ELAVL1.

224

miR-9-5p –	Expression decreased in biperiden-treated patients compared to placebo group.
–	Regulates stress response genes related to axonogenesis and neuronal death, relevant to PTE 

and TBI.
–	Biperiden may alter miR-9-5p expression in serum EVs, potentially aiding TBI resolution.

225

miR-206, miR-
549a-3p

–	Serum exosomes show good predictive value as biomarkers of TBI.
–	Correlate well with BDNF, NSE, and S100β, indicating potential as biomarkers in TBI pa-

tients.

226

miR-148a-3p –	MiR-148a-3p was highly expressed in TBI. 
–	Significantly improved neurological scores and reduced brain injury in a rat TBI model by 

promoting microglial M1 to M2 transition.
–	Alleviated TBI by inhibiting the NF-κB pathway.

227

miR-127-5p –	Downregulated in patients with TBI.
–	Negative correlation with miR-423-3p confirmed binding to hsa_circ_0018401 via dual lucifer-

ase assay.
–	hsa_circ_0018401 and miR-127-5p, alone or in combination, have clinical value for TBI diag-

nosis, stratification, and outcome prediction.

184

Table 2. (Continued)
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critical role of miRNAs as key regulators of neuroinflam-
mation in TBI, emphasizing their potential as therapeutic 
targets for managing this complex condition.

FUTURE PROSPECTIVE AND 
RECOMMENDATIONS

To enhance the clinical utility of inflammatory markers in 
diagnosing mTBI, addressing the significant variability in 
current study designs, analyses, and reporting is crucial. 
Improving the quality of evidence for these markers will 
involve enrolling representative and diverse study cohorts. 
Large-scale, multicenter initiatives like the CENTER-TBI 
and TRACK-TBI studies present an excellent opportunity 
to achieve this goal. By including participants from varied 
populations, these studies can generate findings that are 
more broadly applicable to mTBI cases228. The substan-
tial sample sizes provided by such multicenter studies al-
low for more accurate statistical analysis, accounting for 
various confounding factors such as age, gender, previous 
head injuries, and extent of extracranial damage. These 
methodological advancements will contribute to a more 
reliable understanding of how inflammatory markers can 
be used in mTBI diagnosis and treatment.

A key challenge is distinguishing neuroinflammation 
from systemic inflammation due to extracranial injuries. 
Several strategies are being explored to tackle this issue: 
(I) Statistical Corrections and Control Groups: Using 
statistical methods to adjust for extracranial injuries or 
including patients with orthopedic injuries alongside 
healthy controls can help isolate neuroinflammation229,230. 
(II) Cranial EVs: Analyzing inflammatory markers within 
cranially derived EVs may offer a direct measure of the 
cranial inflammatory response, potentially providing 
a clearer indication of neuroinflammation130,231. (III) 
MicroRNA Analysis: Assessing microRNAs as biochemi-
cal markers of inflammation could help identify signals 
specific to neuroinflammation230,232. (IV) Proteomic 
Techniques: Employing proteomics might uncover bio-
markers uniquely associated with the neuroinflammatory 
response233.

Looking ahead, there is a shift expected from tradi-
tional analytical methods, such as ELISA Immunoplex, 
and SIMOA, to Point-of-Care (POC) platforms that use 
electrochemical biosensors234,235. POC platforms offer the 
advantage of quickly identifying biomarker concentrations 
at the site of injury or in emergency settings without the 
need for extensive laboratory processing236. Recent devel-
opments show that POC tests combining UCH-L1 and 
GFAP can match the sensitivity of traditional lab-based 
methods. Given that some inflammatory markers rise 
rapidly after injury, integrating them into POC platforms 
could be beneficial for early mTBI assessment. However, 
solid evidence is needed before incorporating these mark-
ers into routine clinical practice. 

Research involving EVs in TBI faces several hurdles, 
such as the need for standardized isolation protocols and 
dealing with the inherent heterogeneity of EVs237. This 
variability in size, shape, and content, along with the 

diverse origins of EVs, complicates the use of a single 
profiling approach237. Moreover, exosome toxicity adds 
another layer of complexity, highlighting the need for fur-
ther research to develop safe and effective exosome-based 
treatments for TBI. Establishing standardized methods 
for EV isolation and analysis will be crucial for ensur-
ing consistent and comparable results across studies238. 
The application of machine learning to analyze EV cargo 
data shows promise for developing predictive models for 
disease diagnosis and treatment. By integrating various 
omics data types, machine learning can identify patterns 
and relationships, leading to personalized treatment rec-
ommendations based on individual patient profiles239,240.

Emerging research indicates that mTBI may elevate 
the risk of neurodegenerative diseases if proper recovery 
time is not allowed241. Such injuries are common among 
athletes and military personnel but are often underre-
ported. Therefore, finding objective markers that go be-
yond traditional assessments – like symptom evaluations, 
cognitive tests, and balance assessments – is critical242,243. 
Exosomal biomarkers, acting as a "liquid biopsy," could 
provide valuable insights into brain-specific changes 
following Mtbi (ref.244). Further research on these bio-
markers could illuminate the long-term effects of mTBI, 
including the potential development of conditions like 
Alzheimer's disease or chronic traumatic encephalopa-
thy. Expanding testing protocols and further investigat-
ing exosomal biomarkers will be essential for improving 
long-term outcomes for individuals with mTBI (ref.238). 
Building a strong interdisciplinary research community 
will be key to advancing TBI management and preven-
tion238.

CONCLUSIONS 

The diverse etiology, pathology, and clinical progres-
sion of TBI present substantial challenges for the use of 
traditional biomarkers in both clinical practice and re-
search. Neuroimaging methods such as CT and MRI are 
effective for detecting major head injuries but fall short 
in identifying subtle neural damage or structural changes, 
and their high costs restrict their widespread application. 
Fluid biomarkers, although potentially useful for corre-
lating with neuronal, axonal, or glial cell injuries, often 
suffer from low abundance and require highly sensitive 
assays, which can result in undetectable levels. EVs and 
non-coding RNAs, particularly miRNAs, offer promis-
ing alternatives. Elevated levels of these biomarkers in 
TBI patients compared to healthy individuals have been 
observed. Research indicates that EVs and miRNAs can 
provide high diagnostic accuracy for TBI, especially in 
cases with diffuse injuries, where increased levels of exo-
somal GFAP and neurofilament light chains are noted. 
Moreover, miRNA profiles in CSF and serum plasma 
show distinct variations following TBI, reflecting injury 
severity and aiding in both diagnosis and severity assess-
ment. Despite the advantages of isolating exosomes and 
miRNAs over traditional fluid proteins, challenges remain 
due to the variability in miRNA expression among in-
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dividuals, particularly those with altered consciousness. 
Identifying the most effective miRNAs and establishing 
reliable cutoff values for TBI diagnosis and prognosis 
continue to be complex issues that need to be addressed.

Search strategy and selection criteria
The search strategy for this review involved systemati-

cally querying electronic databases, including PubMed, 
Scopus, and Web of Science, for articles published up 
to August 1, 2024. Keywords such as “traumatic brain 
injury,” “biomarkers,” “extracellular vesicles,” “non-cod-
ing RNAs,” and “clinical outcomes” were used in various 
combinations. Selection criteria included peer-reviewed 
original research or review articles focusing on biomarker 
applications in TBI prognosis or diagnosis. Exclusion cri-
teria encompassed studies with insufficient methodologi-
cal details or non-human data. References were screened 
based on relevance, quality, and recency to ensure com-
prehensive coverage of the topic.
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