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Two de novo UBR1 variants in trans as a cause of Johanson-Blizzard syndrome
Lukas Strych1, Tomas Zavoral1, Pavla Komrskova1, Tomas Vanecek2,3, Ivan Subrt1

Aims/Background. Johanson-Blizzard syndrome (JBS) is a rare autosomal recessive disease caused by pathogenic 
variants in the UBR1 gene. JBS is usually suspected based on characteristic anomalies, but only genetic testing provides 
a definitive diagnosis. Since most variants are inherited from the parents, we aimed to identify the causal variants in a 
Czech proband with clinically suspected JBS and perform segregation analysis.
Methods. A proband with clinically suspected JBS underwent clinical exome sequencing (CES). Sanger sequencing was 
used for the validation, characterization, and segregation of variants in the family. The variants were also characterized 
using quantitative real-time PCR (qPCR) and in silico analysis. 
Results. Using CES in the proband, we identified two novel causal variants in the UBR1 gene, c.3482A>C and 
c.3509+6T>C. Although the variants were found in trans, neither was detected in the parents. Sanger sequencing of 
the cDNA revealed that the novel variant c.3509+6T>C caused activation of the non-canonical GC donor splice site. 
The inclusion of 70 bp of the intronic sequence generated a frameshift and a premature termination codon leading to 
nonsense-mediated decay, as detected by qPCR. In silico protein structural analysis showed that the novel missense vari-
ant c.3482A>C in the zinc-stabilized domain RING-H2 altered a highly conserved zinc-coordinating histidine by proline. 
Conclusion. To the best of our knowledge, we report the first molecular confirmation of JBS in the Czech Republic 
and the first identification of two de novo causal variants in two alleles. Our findings also expand the spectrum of 
pathogenic variants in the UBR1 gene.
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TWO DE NOVO UBR1 VARIANTS IN TRANS AS A CAUSE OF JOHANSON-BLIZZARD SYNDROME

The first molecular confirmation of JBS in the Czech Republic. 
The first identification of two de novo causal variants in two alleles.
Strych L. et al., doi: 10.5507/bp.2025.005
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INTRODUCTION

Johanson-Blizzard syndrome (JBS) (MIM #243800) 
is a rare autosomal recessive disease characterized by 
pancreatic exocrine insufficiency and other abnormali-
ties comprising nasal wing hypoplasia/aplasia, oligodon-
tia/hypodontia of permanent teeth, hearing impairment, 
cognitive impairment, short stature, scalp defects, hypo-
thyroidism, microcephaly, heart defects, imperforate anus 
and genital malformations1-3. The estimated birth preva-
lence of JBS in Europe is approximately 1:250 000 (ref.2). 

JBS is caused by pathogenic variants in the UBR1 
gene encoding an E3 ubiquitin (Ub) ligase of N-degron 
pathways (formerly “N-end rule pathways”) that are evo-
lutionarily conserved ubiquitin-dependent proteolytic 
systems2,4,5. In N-degron pathways, E3 Ub ligases (also 
called N-recognins) recognize proteins containing spe-
cific N-terminal degradation signals (termed N-degrons), 
conjugate a Ub, and thus mark them for subsequent pro-
teasome degradation4. More specifically, UBR1 is one 
of at least four E3 Ub ligases responsible for the Arg/N-
degron pathway6. UBR1 recognizes two types of degrons: 
type-1 (basic) N-degrons and type-2 (bulky hydrophobic) 
N-degrons7. Although the role of UBR1 in protein degra-
dation has been well characterized, the impact of impaired 

protein degradation on the development of abnormalities 
in JBS patients remains to be elucidated.

The UBR1 gene contains 47 exons that encode a large 
protein with a total length of 1749 amino acids. It con-
tains several domains, including two zinc finger domains8, 
the UBR box involved in recognizing type-1 N-degrons9, 
and the RING-H2 domain involved in E3 ubiquitin ligase 
activity10. In addition to these domains, UBR1 contains 
the N-domain (also known as the ClpS domain) required 
for recognition of type-2 N-degrons9, and the C-terminal 
UBR-specific autoinhibitory domain thought to be in-
volved in the regulation of UBR1 activity11. Moreover, 
new key structural elements were recently identified and 
characterized in the yeast UBR1 and thus may also be 
present in the mammalian UBR1 (ref.12).

To date, the largest database of UBR1 variants (http://
databases.lovd.nl/shared/variants/UBR1) contains 75 
likely pathogenic/pathogenic variants identified in 78 in-
dividuals with JBS. A review of the clinical and molecular 
data of 60 patients with JBS in 2014 showed significant 
genotype-phenotype correlations1. Pathogenic variants 
that create premature stop codons such as nonsense, 
frameshift, and splice site variants, leading to a complete 
lack of UBR1 protein, were associated with the full JBS 
phenotype. In contrast, splice site variants leading to in-

Fig. 1. Identification of heterozygous UBR1 variants in the family. 
a. Pedigree of the family. b. IGV image of the CES data in the proband showing the trans position of the variants. Note that the 
orientation of UBR1 is the opposite orientation in the genome. c. Sanger sequencing showing both variants in the proband and 
none in the parents and brother.
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frame deletions, small in-frame deletions, and missense 
variants correlated with milder physical abnormalities 
and normal intelligence. The residual protein function of 
missense UBR1 variants was demonstrated by functional 
analysis using yeast as a model organism13. No prominent 
mutation hotspots were identified, and the majority of the 
reported variants were nonrecurring1.

Although JBS is usually diagnosed/suspected based 
on rare early onset of exocrine pancreatic insufficiency 
and accompanying characteristic anomalies, the diagno-
sis is confirmed only by molecular testing of UBR1, the 
only diagnostic tool that provides a definitive diagnosis1. 
Molecular testing of UBR1 was conventionally performed 
using Sanger sequencing of all 47 UBR1 exons and flank-
ing intronic regions1,14. 

Nowadays, it seems more promising to use next-gen-
eration sequencing with analysis based on the patient 
phenotype. In addition to possible benefits for the pro-
band, molecular confirmation of JBS is highly valuable 
for parents planning future pregnancies. The generation of 
de novo variants in the human genome is extremely rare, 
with approximately 60–100 new variants per individual15. 
Thus, the probability that both parents are carriers is sig-
nificantly higher than the occurrence of at least one de 
novo variant in the proband. In that case, parents with 
identified variants can be offered preimplantation diag-
nostics and prenatal testing during genetic counselling14. 
Only molecular testing enables early diagnosis because 
prenatal ultrasound scanning may not detect any physical 
abnormalities1. 

We report a rare case of a proband with clinically 
suspected JBS in which molecular testing confirmed the 
diagnosis by identification and characterization of two de 
novo pathogenic variants in UBR1. 

MATERIALS AND METHODS

Ethics approval and consent to participate
Ethics approval was obtained from the Ethics 

Committee of the University Hospital and the Faculty of 
Medicine, Charles University in Pilsen. Written informed 
consent was obtained from the family members. All meth-
ods were carried out in accordance with relevant guide-
lines and regulations.

Patient clinical phenotype 
The proband, 22 years old at her last follow-up, was 

referred for genetic counseling at 4 weeks of age. She 
was born to healthy, unrelated parents of Czech origin 
(Fig. 1a). At birth, she presented with a scalp defect 
in the parieto-occipital region, hypoplasia of the nasal 
wings, and pancreatic insufficiency. Cytogenetic analysis 
revealed no chromosomal aberration. Due to the typi-
cal clinical picture, the diagnosis of Johanson-Blizzard 
syndrome was suspected. Subsequently, she developed 
hearing loss, oligodontia, and short stature. At the last fol-
low-up, she studied computer graphics at a special school 
for individuals with hearing impairment. A cochlear im-

plant is planned to correct the hearing loss. She has an 
older, healthy brother.

Genomic DNA extraction, total RNA extraction, and 
cDNA synthesis

Genomic DNA was isolated from the peripheral blood 
of the proband and her family members using the Gentra 
Puregene Blood Kit (Qiagen, Hilden, Germany) accord-
ing to a standard protocol. RNA was isolated from the 
peripheral blood of the proband using Tempus™ Spin 
RNA Isolation Kit (Thermo Fisher Scientific, Waltham, 
MA) and reverse-transcribed using High Capacity cDNA 
Reverse Transcription Kit (Thermo Fisher Scientific, 
Waltham, MA) according to the manufacturer’s instruc-
tions.

Clinical exome sequencing and data analysis
Clinical exome sequencing and data analysis were per-

formed on the proband’s sample. Clinical exome library 
preparation was performed using SOPHiA Clinical Exome 
Solution v2 (SOPHiA Genetics, Lausanne, Switzerland) 
and high-throughput sequencing was generated on a 
MiSeq (Illumina, San Diego, CA, USA) in the 300 bp 
paired-end mode according to the manufacturer’s instruc-
tions. For data analysis, sequence reads were aligned to 
the UCSC human reference genome (GRCh37/hg19 as-
sembly). Our in-house pipelines include FastQC v0.11.8, 
Bowtie2 v.2.3.5 (ref.16), Picard v2.21.6, SAMtools 1.10 
(ref.17), Freebayes v1.3.1, and bedtools v2.29.2 (ref.18). The 
Variant Call Format file was uploaded to the Franklin 
Analysis platform (https://franklin.genoox.com) for vari-
ant annotation, classification, and filtration. Variants were 
classified according to ACMG guidelines19 in line with the 
ClinGen SVI general recommendations for using ACMG/
AMP criteria.

To identify causal variants, we considered only patho-
genic, likely pathogenic, and leaning pathogenic variants 
of unknown significance in the UBR1 gene with minor 
allele frequency <0.05 both in the general population 
and in-house database. Variants also have to be with >10 
coverage and >100 quality. In order to determine the 
pathogenicity of potential causative variants, missense pre-
diction tools (Polyphen-2 (ref.20), AlphaMissense (ref.21), 
MutationTaster2021 (ref.22), Mutpred2 (ref.23), DANN 
(ref.24), SIFT (ref.25), FATHMM (ref.26)) and splice site 
prediction tools (SpliceAI (ref.27), Pangolin (ref.28), dbsc-
SNV Ada (ref.29), and dbscSNV RF (ref.29)) were used. 
The HGMD (ref.30), ClinVar (ref.31), and LOVD (ref.32) 
databases were also used to evaluate the pathogenicity of 
the variant. Candidate variants were manually checked 
using the Integrative Genomics Viewer (IGV) (ref.33).

Polymerase chain reaction (PCR) and Sanger sequencing 
Variants were confirmed by PCR and bidirectional 

Sanger sequencing of the genomic DNA of proband and 
family members. PCR and Sanger sequencing were per-
formed as previously described34. Forward 5′– gtagcgcgac-
ggccagtTGGACATTCCTAAGACAGTTTGTG–3′ and 
reverse 5′–cagggcgcagcgatgacTTATGGAGAGCAAGCA-
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Fig. 2. Characterization of the c.3509+6T>C variant in the UBR1 gene. 
a. Visualization of the SpliceAI and Pangolin results indicating the activation of the cryptic donor splice site GC. Note that the 
orientation of UBR1 is the opposite orientation in the genome. b. Agarose gel electrophoresis of cDNA products showing an 
aberrantly spliced longer PCR product in the proband (II.2) and not in the healthy control (WT). c. Sanger sequencing of cDNA 
products in the proband showing a weak signal of the 70 bp intronic sequence after exon 31 in forward-direction sequencing and 
before exon 32 in reverse-direction sequencing. In the scheme, PCR primers (PCR) for amplification and sequencing primer (Seq) 
are indicated by arrows. d. Bidirectional Sanger sequencing of aberrantly spliced transcript. In the scheme, PCR primers (PCR) for 
amplification and sequencing primer (Seq) are indicated by arrows. e. Illustration of variant-induced cryptic splice site activation 
leading to partial intron retention, frameshift, and premature termination codon (PTC) located > 50 to 55 nucleotides upstream of 
the 3' most splice-generated exon-exon junction triggering NMD. f. qPCR data showing the relative expression level of aberrantly 
spliced transcript bearing the c.3509+6T>C variant compared to wild-type transcript bearing the c.3482A>C variant in the proband.
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CAAAGGA-3′ primers containing a universal sequencing 
tail (forward: 5′-gtagcgcgacggccagt, reverse: 5′-cagggcg-
cagcgatgac-3′) were used. The impact of the variant on 
RNA splicing was evaluated by PCR and Sanger sequenc-
ing of proband’s cDNA. PCR and Sanger sequencing of 
cDNA was performed using the forward 5′gtagcgcgacg-
gccagtGGCTACATCGCCAGAAGATCA-3′ and reverse 
5′-cagggcgcagcgatgacCCGTGCCAGGGTCAAAAGT-3′ 
primers. For Sanger sequencing of aberrantly spliced 
transcript in the forward direction, the primers specific 
to aberrantly spliced transcript were as follows: forward 
5′-gtagcgcgacggccagtGTGCTGACGTGCATCCTTTG-3′ 
and reverse 5′-cagggcgcagcgatgacACCTTTTTGTG-
GCCTTGAGTG-3′. For Sanger sequencing of aberrantly 
spliced transcript in the reverse direction, the primers 
specific to aberrantly spliced transcript were as follows 
5′-gtagcgcgacggccagtCAGTGTGCTGGCAGAAGTA-
AG-3′ and 5′-cagggcgcagcgatgacCCGTGCCAGGGT-
CAAAAGT-3′. Agarose gel was used to verify the 
amplification products.

PCR and capillary electrophoresis
The analysis of STR loci was performed via 

AmpFlSTR® Identifiler PCR kit and ABI Prism 3130xl 
analyzer (Thermo Fisher, Waltham, MA, USA) accord-
ing to the manufacturer’s instructions. The probability 
of paternity/maternity was counted by Bayes theorem 
(a priori probability 50%) with allelic frequencies for the 
Czech population35.

Quantitative real-time PCR
The allele-specific expression level of the UBR1 gene 

in the proband’s cDNA was detected by quantitative 
real-time PCR (qPCR) using ABsolute QPCR Mix, no 
ROX (Thermo Fisher Scientific, Waltham, MA) and 20× 
EvaGreen Dye (Biotium, Freemont, CA) on Rotor-Gene 
Q (Qiagen, Germantown, MD) according to the manufac-
turer’s instructions in three technical replicates. Primers 
specific to aberrantly spliced and wild-type transcripts 
were used. The wild-type specific primers were as follows: 
forward 5′-GCACAGGGGAAAACCCATAGA-3′, and 
reverse 5′-CAAAATACTTCTGCCAGCACACT-3′. The 
primers specific to the aberrantly spliced transcript were 
as follows: forward 5′-ACTGCCTTAACCCAGCACAG-3′, 
and reverse 5′- AAGGACAGCTTACTTCTGCCA-3′. 
The reference gene GAPDH was amplified using forward 
5′-GAGAAGGCTGGGGCTCATTT-3′, and reverse 
5′-TAAGCAGTTGGTGGTGCAGG-3′ primers. qPCR 
data were analyzed with double delta Ct analysis and 
the expression level was normalized to the expression of 
GAPDH reference gene in the same sample. The relative 
expression level of the aberrantly spliced transcript to the 
wild-type transcript is shown in the graph.

Protein modelling
The three-dimensional (3D) structures of wild-type 

and mutated UBR1 with His1161Pro were modelled us-
ing the online software, SWISS-MODELL (ref.36). The 
structures of UBR1 were modelled based on the crystal 
structures of yeast scUBR1 (PDB: 7MEX, 7MEY). The 

experimental 3D structure of PDB: 7MEX, 7MEY was ex-
plored in RCSB PDB. The visual illustration is displayed 
in Mol* viewer37.

RESULTS

Identification of two novel candidate variants in UBR1 
To identify the pathogenic variants, the proband 

clinically diagnosed with JBS underwent clinical 
exome sequencing. After the filtering steps, only two 
candidate heterozygous variants in UBR1 were left, 
NM_174916.3:c.3482A>C located in exon 31 and 
NM_174916.3:c.3509+6T>C located in the donor splice 
site of exon 31. These variants were not found in public 
genetic databases or the literature. According to ACMG 
guidelines, both variants were classified as variants of 
unknown significance using PP3 and PM2 criteria. Due 
to their proximity, we visually checked the NGS data in 
IGV and discovered that they were in the trans position 
(Fig. 1b). Sanger sequencing confirmed both variants in 
the proband but did not detect either variant in the par-
ents and brother of the proband (Fig. 1c). However, both 
maternity and paternity were verified by analyzing STRs 
loci (data not shown). 

Effect of the c.3509+6T>C variant on splicing
To assess the possible deleterious effect of the 

c.3509+6T>C variant on pre-mRNA splicing, multiple 
in silico prediction tools were used. High scores from 
SpliceAI (0.58), dbscSNV Ada (0.99), and dbscSNV RF 
(0.84) given by Franklin indicated a high likelihood of 
disruption of the canonical donor splice site of exon 31. In 
addition, SpliceAI and Pangolin on the website (https://
spliceailookup.broadinstitute.org) also predicted possible 
activation of cryptic donor splice GC site 70 bp down-
stream from the canonical donor splice site (Fig. 2a).

The predicted effect of the c.3509+6T>C variant on 
pre-mRNA splicing was further investigated by RNA 
analysis. We isolated RNA from the proband’s periph-
eral blood and performed reverse transcription and PCR 
amplification of exons 29–33 of the proband’s cDNA. 
Agarose gel electrophoresis of the cDNA products in the 
proband showed an aberrantly spliced longer product in 
addition to the normally spliced product found in the 
healthy control (Fig. 2b). Subsequent Sanger sequencing 
of the cDNA products in the proband revealed a minor 
wave of sequences at the junction of exon 31 and exon 
32 in both directions, corresponding to 70 bp of the in-
tronic sequence (Fig. 2c). It was further confirmed by 
bidirectional Sanger sequencing of aberrantly spliced 
product using primers specific to the aberrantly spliced 
transcript (Fig. 2d). The inclusion of the 70 bp intronic 
sequence shifts the open reading frame that introduces a 
premature termination codon leading to degradation via 
nonsense-mediated decay (NMD) according to 50–55 nt 
rule38. The diagram for aberrant splicing is shown in Fig. 
2e. Elimination of aberrantly spliced transcript via the 
NMD pathway was confirmed by qPCR measuring the 
UBR1 mRNA expression (Fig. 2f). qPCR data showed a 
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decrease in the amount of aberrantly spliced transcript 
compared to the wild-type transcript by approximately 
65%. Based on our functional study showing the delete-
rious effect of the variant, we classified the variant as 
pathogenic (PP3, PM2, PVS1).

In silico analysis of the c.3482A>C variant
The c.3482A>C variant caused the substitution of 

histidine with proline at position 1161. This position cor-
responds to the first zinc-coordinating histidine (H1) 
in a highly conserved C3H2C3 zinc finger motif of the 
RING-H2 domain (Fig. 3a). Multiple prediction tools 
predicted deleterious effects on the protein. MutPred2 
predicted loss/gain of certain properties of five residues 
around the substitution site (loss of catalytic site at H1161, 
gain of disulfide linkage at C1159, altered metal bind-
ing, gain of strand and loop). In order to visually assess 
the possible structural effect of the variant, we predicted 
the 3D structure of both wild-type and mutant UBR1 
based on the crystal structures of yeast scUBR1, using 
SWISS-MODELL. During homology modelling, we 
identified that His1161 corresponds to His1297 in the 
scUBR1. By assessing the structure of scUBR1, we identi-
fied that His1297 has already been subjected to targeted 
mutagenesis10 (Fig. 3b). It was reported that His1297Ala 

slightly inhibited the degradation of N-end rule substrates. 
Additionally, the generated 3D structures showed that 
His1161 coordinates a second zinc ion in the RING-H2 
domain (Fig. 3c) and that proline at this position thus 
should abolish the coordination of the zinc ion (Fig. 3d). 
Based on our findings, we classified the c.3482A>C vari-
ant as a pathogenic variant (PP3, PM2, PM3, PS3, PM1).

DISCUSSION

In this study, molecular testing confirmed JBS in the 
clinically suspected proband by the identification of two 
heterozygous UBR1 variants in the trans position. Neither 
variant was found in the parents nor the brother, indicat-
ing their de novo origin. The detection of two germline 
de novo variants in a single gene in a patient has been 
reported only in several publications39-46. In all cases, both 
variants were identified on a single allele in close proxim-
ity, probably due to a single mutation event39. Here, we 
identified two de novo variants within/around exon 31 on 
different alleles. We found no report showing the detec-
tion of two causal de novo variants in a single gene on 
different chromosomes in a single patient. 

Since we consider any event by which two closely lo-

Fig. 3. Characterization of the c.3482A>C variant. 
a. Schematic localization of zinc-coordinating cysteines (C) and histidines (H) in the C3H2C3 motif of the RING-H2 domain. 
b. Sequence Annotations Viewer for PDB 7MEX showing the results of performed mutagenesis at position 1297 derived from 
UniProt. c. 3D structural model of wild-type UBR1 zoomed at the position of the second zinc ion in the RING-H2 domain. d. 3D 
structural model of mutant UBR1 zoomed at the position of the His1161Pro variant.

a b

c d
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cated variants arising from a single mutation event would 
be transferred to different alleles highly improbable, we 
assume that these variants arise independently by two 
mutation events and that their proximity is due to coinci-
dence. Considering statistics, they probably occurred as 
paternal and maternal “one-off” variants during sperm 
and oocyte production47. Since it has been assumed to 
arise in a single sperm and oocyte, recurrence risk is neg-
ligible in other children47. With a much lower probability, 
there is a possibility of parental germline mosaicism or 
early post-zygotic mutation events in the proband47. As in 
most clinical genetic laboratories, these possibilities were 
not tested due to a lack of biological samples. 

The identification of two novel candidate UBR1 vari-
ants in trans by CES was consistent with the phenotype 
and mode of inheritance. They were initially classified 
as variants of unknown significance, so we decided to 
confirm their pathogenicity. SpliceAI and newer Pangolin 
splicing prediction models were visited on the website for 
more information. Our results demonstrated that these 
tools also consider non-canonical splice sites, such as GC-
AG splice sites, accounting for ∼0.8% of human splice 
sites48. The activation of non-canonical splice sites can 
be easily missed even by widely used splice-site prediction 
tools such as NNSplice0.9, which considers only GT for 
the donor site and AG for the acceptor site49,50. Since 
prediction should not be the sole source for assessing 
pathogenicity50, we performed functional analysis on the 
proband’s RNA. 

Amplification and sequencing of exons 29–33 were 
performed in case of exon skipping or another non-pre-
dicted event. Detection of the aberrantly spliced product 
confirmed the predicted activation of the cryptic donor 
splice site but with low signal intensity. Therefore, we fur-
ther confirmed these findings by aberrant-splicing specific 
PCR and Sanger sequencing. Extraction from gel is not 
used in our laboratory. The predicted degradation of the 
aberrantly spliced transcript by NMD could be observed 
at the low signal of the 70 bp intronic sequence during the 
sequencing of exons 29–33. However, Sanger sequencing 
is not quantitative. We thus validated the degradation by 
allele-specific qPCR. The amount of aberrantly spliced 
transcript decreased to 35% of the wild-type transcript, 
which is consistent with other publications confirming 
NMD via qPCR (ref.51,52). To date, no other splice-site 
variant-induced activation of the non-canonical GC splice 
site has been reported in a patient with JBS. 

Molecular characterization of the c.3509+6T>C vari-
ant also provides additional evidence of the pathogenicity 
of the c.3482A>C (p.His1161Pro) variant (PM3 criteri-
on). In addition, during protein modelling we identified 
a source10 with a functional study showing deleterious 
effects of Cys→Ser or His→Ala mutations in the C3H2C3 
motif in the RING-H2 domain (PS3 criterion). Proline, 
which has specific physico-chemical properties, should 
have similar or more adverse effects at this position than 
alanine. There was no record in the UniProt database 
of previously performed mutagenesis when searching 
for the protein UBR1_HUMAN (Q8IWV7), only for 
UBR1_YEAST(P19812). We performed homology mod-

elling because the RING-H2 domain in UBR1 has not 
been experimentally characterized. The predicted struc-
ture of human UBR1 can be obtained from Alphahold 
(AlphaFold Model – AF-Q8IWV7-F1) but without ligands 
(zinc ions). Our 3D models of UBR1 generated by the 
SWISS-MODEL homology-modelling pipeline illustrated 
the deleterious impact of the variant on the coordina-
tion of the zinc ions. Therefore, we applied the PM1 
criterion. Our findings correlate with those of a recent 
review53 showing that mutation of any conserved Cys or 
His involved in zinc coordination should affect the ubiq-
uitination activity of E3 Ub ligases since coordination of 
two zinc ions in the RING domain is required for E3 Ub 
ligase activity. Additionally, the crucial role of the first 
zinc-coordinating histidine in the RING-H2 domain has 
also been demonstrated in another E3 Ub ligase54. In con-
clusion, our data show that protein modelling, which is 
not routinely performed, can provide valuable evidence in 
clinical diagnostic laboratories, as suggested in recent re-
view55. To date, only three pathogenic variants have been 
identified within the highly conserved RING-H2 domain: 
two nonsense variants (p.Glu1110*, p.Trp1168*) and one 
missense variant (p.Gln1102Glu).

The presence of one missense variant and one splicing 
variant in our proband, who exhibited intellectual abilities 
in the normal range, is consistent with the results of a 
genotype-phenotype study1. In this study, more than half 
of the patients with at least one “non-truncation” variant 
had intellectual abilities within the normal range. In con-
trast, 100% of patients with biallelic truncating variants 
exhibited some degree of cognitive impairment. 

CONCLUSION

To our knowledge, we report the first molecular con-
firmation of JBS in a proband of Czech origin and the 
first identification of two de novo causal variants in trans. 
We also expanded the mutation spectrum of JBS-causing 
variants by identification and characterization of  the 
splice site variant c.3509+6T>C inducing removal of a 
shorter non-canonical GC-AG intron and the missense 
variant c.3482A>C altering a highly conserved zinc-coor-
dinating histidine in the zinc-stabilized domain RING-H2. 
Additionally, our data highlight the limitations of several 
prediction tools in predicting non-canonical splicing, 
the importance of functional studies, and the benefits of 
structural modelling. 
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