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Which bacterial toxins are worthy of validation as markers  
in colorectal cancer screening? A critical review

Kristyna Mezerovaa, Vladislav Raclavskya, Lubomir Staryb

Appropriate screening of early asymptomatic cases can reduce the disease burden and mortality rate of sporad-
ic colorectal cancer (CRC) significantly. Currently, fecal occult blood testing (FOBT) is able to detect up to 80% of 
asymptomatic cases in the population aged 50+. Therefore, there is still a demand for new screening tests that would 
complement FOBT, mainly by detecting at least a part of the FOBT-negative CRC and adenoma cases, or possibly by 
identifying person at increased risk of sporadic CRC in order to offer them tailored follow-up. Among the potential 
markers studied, our knowledge has advanced at most in toxigenic gram-negative bacteria. In this review, we assess 
their potential critically and recommend those best suited for prospective evaluation of their true ability to increase 
the sensitivity of FOBT when combined during general population screening. In our opinion, colibactin and Bacteroides 
fragilis toxin are the best candidates, possibly complemented by the cytotoxic necrotizing factor (CNF).
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INTRODUCTION

In 2020, colorectal cancer showed the 3rd highest 
incidence in men (23.4 new cases per 100,000) and the 
2nd highest in women (16.2) worldwide. In the Czech 
Republic, its incidence was even higher – 38.0 in men 
and 24.6 in women, respectively1. Czech male patients 
are among the 3 highest CRC risk populations in Europe2. 
Although the majority of the patients with CRC were di-
agnosed in early stages, the incidence of CRC increased 
significantly in the Czech Republic from 1982 to 2002 
(ref.3). For brief comparison of the Czech population 
CRC incidence and mortality to other countries see 
Table 1. Due to its typically slow progression, most cases 
of CRC can be successfully treated, provided they are 
diagnosed in an early stage. This can best be achieved 
by appropriate screening strategy. Smaller part of cas-
es, termed hereditary CRC (1-5%), typically develop in 
younger people, whereas most of the cases, termed spo-
radic CRC, develop after the age of 50. Therefore, if CRC 
is present in family history of a person, screening should 
be performed at younger ages and its frequency should be 
tailored according to individual risk assessment. In the 
general population, screening of sporadic CRC is recom-
mended after the age of 50.

Due to the accessibility of colon to endoscopy, colo-
noscopy is the best primary screening option. However, 
adherence to colonoscopy is not high, because of worry-
ing about pain, complications and discomfort. Because 
most of CRC lesions release small amount of blood, 
which can be detected in a stool sample, a fecal occult 

blood test (FOBT) represents an alternative to primary 
screening colonoscopy. Depending upon the performance 
of the particular testing set, CRC or adenoma underlies 
10-30% of its positive results4,5, the rest being caused by 
other sources of bleeding. A positive FOBT result increas-
es the adherence to the following diagnostic colonosco-
py distinctly – in the Czech Republic, 36 086 primary 
screening colonoscopies were performed in 2006-2015, as 
compared to 154 996 colonoscopies following a positive 
FOBT (ref.6).

Table 1. Estimated age-standardized rates of CRC incidence 
and mortality in 2020 – compared to selected other countries.

Country Incidence Mortality
Czech Republic 33.7 12.3
Neighboring or close countries

Germany 25.8 9.9
Poland 30.5 16.1
Slovakia* 43.9 21.0
Austria** 21.0 8.7
Hungary*** 45.3 20.2

Other countries
WHO Europe 28.8 12.0
USA 25.6 8.0
Japan 38.5 11.6
China 23.9 12.0
World 19.5 9.0

*second highest incidence in Europe
**lowest incidence in Europe
*** highest incidence in Europe
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Importantly, FOBT testing enables detection of around 
80% of new asymptomatic CRC cases and 50-60% of ad-
enomatous polyps. However, there is still a demand for 
new screening tests that would complement FOBT, mainly 
by detecting at least a part of the FOBT-negative CRC 
and adenoma cases, or possibly by identifying person at 
increased risk of sporadic CRC in order to offer them 
more frequent periodic screening. Detection of tumor-
specific genetic material, namely detection of microRNA 
and DNA methylation, represents one group of promis-
ing markers7, which is, however, out of the scope of this 
review. Because colonic microbiota is widely accepted to 
play important role in the development of sporadic CRC, 
it represents another source of potential CRC screening 
marker. Unfortunately, despite the recent advances of the 
techniques of gut microbiome analysis, their standardiza-
tion is still not sufficient to bring them closer to routine 
use. Therefore, targeted detection of particular promising 
microbial markers represents a more feasible approach 
in the near future. Among these, toxigenic gram-negative 
rods are the best studied and most promising candidates 
so far. In this review, we assess their potential critically 
and recommend those best suited.

COLIBACTIN

Recently, lot of studies were focused on colibactin, 
a potentially CRC-associated genotoxin. Nougayréde et 
al.8 discovered this hybrid peptide-polyketide genotoxin in 
the B2 phylogroup E. coli and demonstrated its ability to 
induce DNA double-strand breaks (DSBs) in vivo.

Mechanism of action
Colibactin is encoded by genes present in the 54 kb 

polyketide synthase (pks) pathogenicity island. The pks is-
land includes clbA-S genes encoding 3 non-ribosomal pep-
tides (ClbH, ClbJ, ClbN), 3 polyketide–synthases (PKS: 
ClbC, ClbI, ClbO), 2 hybrid molecules (ClbB, ClbK) and 
9 accessory and tailoring enzymes8. 

Mammalian cells infected by a low dose of colibactin 
producing E. coli showed a reversible damage of DNA 
followed by incomplete reparation, and thus resulting in 
DNA-damaged cells after cell division. Colibactin produc-
ers also induced anaphase bridging, chromosome aber-
rations, aneuploidy and tetraploidy in the infected cells. 
Moreover, increase in gene mutation rate and anchorage-
independent colony formation were observed in the in-
fected cells9. 

Molecular pathogenesis of the colibactin-mediated 
DNA damage was clarified by Li et al.10, who character-
ized its mature metabolite, colibactin-645. Namely, this 
showed an unusual heterocycle-fused macrocyclic struc-
ture that mediated copper binding and reduction leading 
to DNA DSBs in vitro.

Supporting evidence
Colibactin action has been explored by many scientists 

so far and recent studies contributed significantly to our 
understanding on how it promotes colon tumor forma-

tion. With the help of in silico modelling it was estab-
lished that the regions affected by colibactin-645-mediated 
DSBs harbor AT-rich penta/hexameric sequence motifs 
with unique characteristics. Subsequently, these colibac-
tin damage motifs (CDMs) were found to be enriched in 
mutations in cancer genomes, providing another direct 
proof of colibactin genotoxicity11. 

Despite the fact that colibactin molecule is unstable 
and many attempts for its isolation by traditional ap-
proaches failed, its structure came to light in 2019. Due 
to combination of chemical synthesis, mass spectrom-
etry, genetics and bioinformatic techniques, the team led 
by Mengzhao Xue et al.12 uncovered the mystery of this 
molecule. This was crucial for further understanding of 
genotoxic and cytotoxic mechanisms of colibactin action. 
Wilson et al.13 were able to compare the DNA adducts 
present in cells infected by pks+ E. coli to those present 
in cells infected by a mutant strain to DNA from cells 
infected by a strain missing the pks island. This experi-
ment provided direct evidence of the colibactin ability to 
alkylate DNA in vivo. In addition, the human intestinal 
organoids exposed to pks+ E. coli showed a mutational 
signature resulting from single base substitutions (SBS) 
and deletions at adenine-enriched motifs14. This study 
amended the previously obtained results of Kusibab et 
al.11 and Wilson et al.13, by describing the formation of 
adenine-colibactin adducts and DNA interstrand cross-
links14. As Pleguezuelos-Manzano et al. suggested, the 
DNA crosslinks formed between two adenosines could in-
duce the DSBs, nucleotide excision repair and translesion 
synthesis leading to above mentioned SBS-pks and dele-
tions, termed ID-pks14. As a recent review proposed, this 
study directly links the mutations associated with higher 
risk of CRC development with colibactin exposure15.

Potential for screening
Due to its confirmed genotoxicity, colibactin has been 

proposed to serve as a noninvasive CRC marker that can 
be detected in an easily available stool sample or a rectal 
swab. Many studies have analyzed the prevalence of co-
libactin in CRC patient samples versus healthy controls 
in order to verify its usefulness as a CRC marker. As one 
example for all, the gene clbA was detected by qPCR in 
stool samples of patients invited for colonoscopy after 
presenting with symptoms from the large bowel. Positive 
qPCR results was obtained 56.4% of CRC patients versus 
31.3% of dysplasia and 18.5% of negative patients16. 

Open questions and limitations
Nowadays there is no doubt that the genotoxin coli-

bactin is able to harm the cells so much that it can facili-
tate transformation of healthy mucosa into carcinomas17. 
However, several authors claim that colibactin producers 
are present also in samples from healthy people18-20, even 
in samples coming from healthy newborns21,22. It should 
however be noted that the harmful potential of pks+ E. coli 
may be rather different in younger versus older people. It 
is quite conceivable that pks+ E. coli is unable to induce 
CRC de novo, but it does facilitate the progression of pre-
cancerous lesions into cancer. In such case, its presence 
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would be linked to CRC only in people aged 50+, where 
the sporadic CRC develops typically. Be it as it may, the 
promising results of existing studies have yet to be proved 
in prospective screening studies.

Furthermore, number of studies published on colibac-
tin in CRC so far relied on detection of the clb genes18,23-30. 
In such detection settings, the open questions are whether 
the genotoxin is present in its active form in the intestinal 
tissue and what triggers its expression. Inflammation was 
demonstrated to be required for expression of pks-associat-
ed genes in a mice model of CRC-tumorigenesis31; another 
study also supports the hypothesis that a hit such as an 
APC mutation is needed for the expression of colibactin 
genes. Moreover, the extent of expression is associated 
with the CRC stage too; the latter the CRC stage is, the 
higher the expression32.

Unfortunately, the data obtained by Pleguezuelos-
Manzano et al. suggest that E. coli Nissle 1917 (EcN) 
could induce the characteristic mutational signature also 
observed in human intestinal organoids exposed to coli-
bactin, thus questioning its safe therapeutic use14. In an 
attempt to solve this problem, Massip et al. succeeded 
to decouple the antibacterial activity of EcN from its 
genotoxic activity. It should be noted that a gene clbP 
coding for colibactin peptidase was found to be required 
not only for an activation of colibactin, but also for the 
antibacterial activity of EcN. This antibacterial activity is 
mediated by two siderophore-microcins (Mcc). Massip et 
al. firstly demonstrated ClbP to be involved both in coli-
bactin activation and in the antibacterial activity of EcN. 
Secondly, in a series of clbP mutants, they identified a sin-
gle amino acid substitution that inactivates the genotoxic, 
but maintains the antibacterial activity of EcN, whereas 
a complete deletion of the clbP gene resulted in its loss. 
This indicates an involvement of the ClbP transmembrane 
domain in Mcc biosynthesis or secretion, and presumable 
co-evolution of the pks island and the siderophore-Mcc 
biosynthesis pathway33. More importantly, it opens the 
way to the safe use of a modified EcN in clinical practice. 

Yet another study focused on the  potential of pks+ 
EcN in tumor targeting therapy34. EcN could be used as a 
carrier delivering cytotoxic compounds directly into CRC 
tumors since it has been demonstrated to colonize the 
tumor tissue. The cytotoxic compound-colibactin complex 
could be activated by over-expression of mtaA encoding 
myxothiazole gene cluster, a key enzyme for colibactin 
pathway34. Undoubtedly, these promising results encour-
age further explorations in this direction. Doubts about 
the toxigenic E. coli being a cause or effect of CRC were 
recently summarized and framed by Wassenaar35, who 
argue that cell and animal models proving its carcinogenic 
action are rather artificial; the clinical data on associa-
tions of toxigenic E. coli and CRC can equivalently be 
explained as enhanced and prolonged colonization result-
ing from the disease itself. This alternative hypothesis also 
proposes colibactin not to act as a carcinogen, which is 
not evolutionary meaningful, but rather as a bacteriocin35.    

Standpoint on suitability and feasibility for screening 
purposes

Altogether, in case colibactin really does promote 
CRC, it looks like its expression and thus true pro-onco-
genic action relies upon numbers of processes, preferen-
tially the inflammation, genetic predisposition and the 
stage of CRC. Colibactin-positive E. coli itself is not neces-
sarily a CRC promoting factor, it could be just a harmless 
commensal bacterium in those hosts who do not harbor 
or are not exposed to other CRC-promoting factors. From 
this point of view, the colibactin would rather represent 
a co-factor promoting CRC development in predisposed 
host and/or facilitate its progression.

However, this does not necessarily preclude its suit-
ability for screening purposes. As aptly remarked by 
Wassenaar who questioned the true CRC-promoting ac-
tion of pks+ E. coli in human colon: “Patients suffering from 
CRC are not helped by work demonstrating that they can, at 
least in part, blame their bacteria for the disease.”(ref.35). 
Despite the bluntness of this statement, it also means if a 
bacterium can be reliably associated with asymptomatic 
presence of cancer in clinical studies, it is worth of explor-
ing its potential as biomarker of the disease, irrespective 
of being possibly just a consequence, not cause of the 
disease.

On the other hand, it should also be noted that an-
swering the question of cause or effect has its important 
practical implications as well – in case causative or pro-
moting role of colibactin or other E. coli toxins in CRC 
development would be proved, identification of its sources 
in human diet and/or environment may represent an at-
tractive target for primary prevention of CRC.  

Be it as it may, the time has come for prospective stud-
ies of colibactin gene detection on wide real population 
eligible for FOBT, best performed from the same sample 
along with FOBT to establish its true potential to con-
tribute to better performance of current CRC screening 
strategies. Although expression analysis from targeted 
sampling would be the best option in the context of the 
conditional association with CRC outlined above, this is 
not well suited for routine screening purposes. Thus, de-
spite the limited specificity of mere gene detection, it can 
still be useful for screening given it can significantly in-
crease the sensitivity or specificity of the currently widely 
available FOBT.

CYTOLETHAL DISTENDING TOXIN (CDT)

Different types of toxins with similar cytotoxic activity 
are summed under the term CDT. A heat labile cytolethal 
toxin produced by E. coli and Campylobacter sp. isolates 
was firstly described by Johnson and Lior in 1988. They 
demonstrated the cytotoxicity of the producing strains 
on Chinese hamster ovary cells, Vero, Hela and Hep-2 
cells. The CDT-producing strains caused progressive cell 
distension, however they were neither invasive, nor he-
molytic36,37.
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Mechanism of action
At the molecular level, the CDT is composed of three 

proteins, namely CdtA, CdtB and CdtC, that vary in se-
quence homology across bacterial species. The cdtB gene 
coding for the CdtB subunit was characterized as the most 
conserved and the largest one with 819 bp length. The 
cdtA and cdtC subunits comprise 711 and 570 bp, respec-
tively38. The three slightly overlapping cdtA-C genes are 
located on a chromosome; on the contrary to the plasmid-
harbored cdt-III allelic cluster. This cdt-III allele is located 
on a plasmid together with the cnf2 gene encoding cyto-
toxic necrotizing factor (CNF) (ref.39). 

Although there are five variants of CDT alleles, expres-
sion of all three cdtA-C genes is always required for CDT 
cytotoxic activity38,40. The CdtA and CdtC subunits are 
needed for translocation of the CdtB subunit into a host 
cell, where the genotoxin can promote its harmful action. 
The CdtB subunit, which is necessary for toxin induced 
DNA damage41, is homologous to mammalian DNaseI 
and hence demonstrates nuclease activity in vivo and in 
vitro, resulting in DNA fragmentation and reversible cell 
cycle arrest42–44. In addition, CDT is also able to irrevers-
ibly block cells at the G1/S/G2/M phase of their cell cycle 
depending on the cell type38,45-47. Moreover, CDT was de-
scribed to be able to induce DSBs in non-proliferating 
cells as well41,45. The formation of DSBs activates a DNA 
damage responses avoiding replication, which leads to 
genetic instability favoring tumor promotion48,49.

Supporting evidence
The genotoxic activity of CDT was demonstrated not 

only in vitro, but also in vivo39,50,51. In vitro studies con-
firmed its harmful effect on rat fibroblasts, rat small in-
testine epithelial cells and human colon cancer cell lines, 
including increased frequency of mutations, chromosomal 
aberration and cell cycle disruption50,52. Irreversible mega-
locytosis caused by CDT-positive strains was observed in 
HeLa cells as well26. Moreover, in a recent study by He et 
al.52, the CDT producing Campylobacter jejuni was proved 
to be tumorigenic; mice infected by a CDT-producing 
human C. jejuni clinical isolate displayed an increased 
number of tumors compared to controls. Although there 
was no difference in the inflammation between the in-
fected and control animals histologically, an increase 
of proliferating cell nuclear antigen was observed in the 
CDT-positive group. Moreover, the nuclear β-catenin was 
overrepresented in colonic mucosa; remarkably, its over-
expression – driven by the down-regulation of the well-
known tumor suppressor called adenomatous polyposis 
coli (APC) – is associated with CRC (ref.52). Even more 
insight into the true role of CDT in CRC was brought by 
the study of Graillot et al.51, who exposed three isogenic 
cell lines to E. coli CDT. Whereas precancerous APC- 
and p53-deficient cells showed impaired DNA damage 
response after CDT exposure, cells expressing oncogenic 
KRAS were more resistant, indicating that CDT does not 
initiate CRC by itself, but may have promoting effect in 
premalignant colonic lesions51.

Potential for screening
As it was confirmed in many studies, the CDT cyclo-

modulin produced by E. coli strains was detected more 
frequently in tumors compared to healthy tissue53. In 
contrast to colibactin, however, the prevalence of CDT-
positive E. coli isolates is much lower18. Therefore, this 
cyclomodulin alone can hardly be used as a sensitive a 
marker of CRC. 

Open questions and limitations
Interestingly, increased frequency of E. coli harboring 

the CDT gene was observed in colonic mucosa of CRC 
patients with stages II, III or IV compared to the early 
stage I (ref.32). In case such direct relationship between 
CDT-positivity and CRC staging would be confirmed 
in large patient cohorts, it may serve as a marker of ad-
vanced CRC before surgery. However, in most cases, 
screening or diagnostic colonoscopy should be much 
more informative. More important, lower frequency of 
CDT in early stages of CRC should rather disqualify it as 
an early screening marker. 

Standpoint on suitability and feasibility for screening 
purposes

Taken together, CDT detection in fecal samples is for 
sure feasible, but its true potential to contribute to CRC 
screening sensitivity and specificity remains to be estab-
lished. Although it cannot be excluded that its detection 
may increase the sensitivity of screening in combined as-
says with other markers, we consider such chance to be 
rather low.

CYTOTOXIC NECROTIZING FACTOR (CNF)

This cyclomodulin was firstly described in cytotoxic 
E. coli strains causing morphological alterations in HeLa 
cells and necrosis in rabbit skin54. CNF is a cyclomodulin 
interfering with cytokinesis, resulting in formation of giant 
flattened multinucleated cells in several cell lines55. It is 
the first toxic factor described to enhance polymerization 
of actin leading to reorganization of microfilaments and 
microtubules and construction of actin complex networks 
in the perinuclear region of the cell56. Two types of this 
cyclomodulin are encoded by two different genes – the 
cnf1 gene was detected only at chromosome, whereas the 
cnf2 is plasmid-encoded. Apart from E. coli, Yersinia pseu-
dotuberculosis is also able to produce this toxin (CNFY) 
that enables it to modulate inflammatory response in in-
fected cells57. 

Mechanism of action
CNF is a dermonecrotic toxin that permanently ac-

tivates the p21 Rho GTPase (ref.58). This GTPase is in-
volved in actin cytoskeleton formation as a member of a 
concerted signaling network. Among others, this GTPase 
is also crucial for cell spreading, the formation of adhe-
sion plaques and other actin-dependent events58,59.

CNF harbors 2 domains: The N-terminal delivery do-
main and the C-terminal deamidase domain. In the course 
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of endocytosis, the toxin is transported into a target cell 
where the deamidase domain is cleaved off and delivered 
into cytoplasm60,61. This C-terminal domain then deami-
dates Rho, Rac1 and CDc42 proteins leading to perma-
nent p21 Rho GTPase activity by blocking its hydrolase 
activity. Stimulated GTPase induces polymerization of 
actin resulting in formation of stress fibers, lamellipodia, 
filopodia and other actin-related phenomena62-65. 

Supporting evidence
CNF1 has been associated with human clinical iso-

lates of uropathogenic (UPEC) and enteropathogenic 
E. coli (EPEC) (ref.66,67). The occurrence of a group of 
genes including cnf1 and present in a pathogenicity island 
of UPEC was detected also in a subgroup of meningitis-
associated strains, suggesting that CNF1 may be one of 
the virulence factors enabling meningeal invasion. A gene 
encoding hemolysin was also detected in the analyzed 
pathogenicity island DNA region68. As it was described 
earlier, the CNF1 toxin production is linked with hemolyt-
ic E. coli phenotype. This association was also confirmed 
by Falbo et al.69 who observed co-occurrence of the cnf1 
and  hly genes in the same DNA region69. On the contrary 
to CNF1, the CNF2 is not associated with hemolytic phe-
notype, however is more lethal in mouse intraperitoneal 
tests and was identified in both intraintestinal and extrain-
testinal human infections70,71.

Genotoxic activity of CNF in vitro and in vivo was dem-
onstrated in a number of studies27,28,53,70. In laboratory rats, 
the study by Kurnick et al.26 confirmed co-occurrence of 
CNF, colibactin and CDT in isolates of pathogenic E. 
coli. The cytopathic effects of CNF and CDT were also 
confirmed in cytotoxicity assays26. Similar results were 
demonstrated in the study by Fabian et al.27, where mega-
locytosis and cell death were observed in HeLa cell lines 
infected by pathogenic strains E. coli harboring CNF1 
genes27.

In a recent study, Zhang et al.72 demonstrated the 
genotoxic property of CNF in colon cancer cells, prov-
ing its carcinogenic effect via driving the treated cells into 
reversible senescence. The upregulation of p53, p21, p16 
and β-galactosidase activity leading to genomic instabil-
ity was observed, as well as aneuploidy of infected cells. 
The survival of CNF1-intoxicated cells remained unde-
termined until Zhang et al.72 revealed the mechanism of 
reprogramming the cells to survive the intoxication. It 
turned out that the key for cell survival is the ability of 
multinucleated cells to enter another cell division cycle in-
stead of proliferation arrest. As multinucleated polyploid 
cells are formed in response to CNF action, asymmetric 
cell division follows during depolyploidization, which 
results in genomic unstable aneuploid daughter cells. 
Notably, aneuploid cells are one of the most common 
phenomena associated with tumors72. 

Potential for screening
High prevalence of CNF-producing E. coli in cancer 

patients was demonstrated in several studies implicating 
its importance in CRC pathology53,68,73-75. In the study by 
Hilali et al.73, the E. coli isolates harboring cnf1 genes were 

detected in blood from cancer patients. CNF-positive E. 
coli was isolated more frequently from biopsies of colon 
tumors compared to diverticulosis patients (P≤0.02), and, 
in diverticulosis patients, the samples free of E. coli were 
more prevalent (19.4%) compared to samples from colon 
tumors (2.6 %) (ref.53). 

Open questions and limitations
Despite the fact that the mechanism of tumorigenic 

action of CNF1 was described in colon cancer cells, the 
prevalence of CNF-positive isolates in CRC samples is 
not as high as in the case of colibactin positive isolates. 
There is a need for further investigation on the potential 
of CNF detection in increasing the sensitivity or specific-
ity of colibactin detection in CRC screening 

Standpoint on suitability and feasibility for screening 
purposes

Taken together, CNF detection in fecal samples is not 
only feasible, but also highly desirable in proof-of-concept 
CRC screening studies. Although, most probably, its sen-
sitivity for screening purposes does not reach that of co-
libactin, it may contribute to the sensitivity a specificity 
of other markers in combined assays.

CYCLE INHIBITING FACTOR (CIF)

Cyclomodulin Cif has an ability to arrest a cell cycle 
in G2 phase without inducing DNA damage. Although 
the effect of Cif is very similar to CDT; the Cif toxin does 
not cause DSBs and, hence, this cyclomodulin cannot be 
considered as a genotoxin. This is an important differ-
ence compared to the toxins described above, action of 
which relies on DNA damage pathways. Nougayrede et 
al.74 first described the enteropathogenic E. coli (EPEC) 
with type III secretion system (TTSS) in 1999, inducing 
the rearrangement of host cell cytoskeleton74. The toxin 
called Cif  and identified only later was also found in 
enterohaemorrhagic E. coli (EHEC), harboring the same 
TTSS secretion system  and causing similar pathologic 
effects in infected cells75.

Mechanism of action
The translocated effector molecule Cif is able to trig-

ger a cytopathic effect in the infected HeLa cells resulting 
in inhibition of G2/M phase transition and in formation 
of actin stress fibers74,76. The arrested cells accumulate 
an inactive phosphorylated Cdk1 molecule, indicating 
that Cif inhibits Cdk1 activation, resulting in blockage 
of cell cycle progression75. Moreover, depending on the 
cell cycle stage at which cells are being infected, Cif also 
induces G1 cell cycle arrest. Such infected cells display 
accumulation of p21 and p27 proteins, which are cyclin-
dependent kinase inhibitors. Specifically, Cif inhibits a 
proteasome-dependent degradation of p21 and p27 with-
out the involvement of p53 as the main transcriptional 
activator, indicating that Cif does not affect the synthesis 
pathway of p21 or p27. Nevertheless, the G1/S cell cycle 
arrest is not resumed by downregulation of p21 nor p27, 
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indicating that Cif affects more than these two proteins 
involved in the cell cycle machinery77. 

The Cif crystal structure was revealed by Hsu et al.78, 
suggesting structural homology to the Pseudomonas sy-
ringae AvrPhB enzyme. A core anti-parallel β-sheet and 
an N-terminal helix packaging against the β-strands are 
always present in this enzyme family, which includes cys-
teine proteases, transglutaminases, and acetyltransferases. 
The Cif protein contains a catalytic triad composed of 
nucleophile Cys109 on the N-terminus of the α-helix, 
His165 located on the N-terminus of the β-strand, and 
the third residue Gln185 on the C-terminal end of the 
β-strand. This catalytic triad is crucial for induction of cell 
cycle arrest, enlargement of infected cells, and for their 
cytoskeletal rearrangement. Importance of the three do-
mains was tested by creating point mutations in the triad 
and infecting HeLa cells by these mutants. The infected 
cell lines did not display any perturbations of cell cycle 
progression78. 

Supporting evidence
In addition to HeLa cells, the cytostatic effect of Cif 

was also tested in intestinal epithelial cells (IEC-6). This 
cell line simulates natural environment of EPEC infection 
and is hence ideal for studying the faith of Cif-infected 
cells. Infection of IEC-6 by Cif-positive EPEC strain re-
sulted in apoptosis 48 hours later. This delayed apoptosis 
is in accordance with presumed action through inhibition 
of the proteasome degradation pathway79.

Potential for screening
Although the cytotoxicity of Cif was proved by a num-

ber of studies, the prevalence of Cif-positive EPEC or 
EHEC in clinical samples is rather low compared to coli-
bactin-, CDT- or CNF-positive E. coli. In the study by Buc 
et al.53, only 6 out of a total of 116 enterobacterial isolates 
were harboring the cif gene. The Cif positive isolates were 
categorized to either the A or B1 phylogenetic group char-
acterized by low virulence53. Similar results were obtained 
in the study from Salvarani et al.80, where Cif-harbouring 
E. coli isolates were associated with the B1 phylogroup 
and showed a low number of additional virulence factors. 

Open questions and limitations
Low prevalence of Cif/positive E. coli appears to be 

one important limitation of its usefulness in CRC screen-
ing. Furthermore, although there is no doubt about the 
pathologic effect if the Cif cyclomodulin, its anticancer 
activity has been studied recently too. As it was demon-
strated earlier, the Cif protein contributes to cell cycle 
arrest by accumulation of p21 and p27 proteins. The ac-
cumulation of these proteins is due to inhibition of the 
cullin-RING-ligase (CRL) activity, which was shown to 
be a promising target in cancer chemotherapy. Its partner 
in the CRL-pathway, the ubiquitin-like protein NEDD8, 
shows increased activity in cancer cells and tumor-promot-
ing activity. Therefore, drugs inhibiting NEDD8 activa-
tion are studied as promising anti-tumor agents, including 
Cif. This cyclomodulin deamidates NEDD8, leading to 
CRL-NEDD8 pathway inhibition81,82. Notably, regulated 

expression of Cif in colon cancer cell lines resulted in 
inhibition of cell proliferation and survival, indicating 
promising potential in colon cancer therapy83. 

Standpoint on suitability and feasibility for screening 
purposes

Unfortunately, both its low prevalence and its possible 
ambiguous role in normal and cancer cells seem to dis-
qualify Cif from being useful for CRC screening in the 
context of current knowledge.

BACTEROIDES FRAGILIS TOXIN (BFT)

B. fragilis is a strictly anaerobic bacterial species at-
tracting researcher´s attention as a producer of the po-
tentially carcinogenic BFT (ref.84). The subgroup of B. 
fragilis producing this metalloprotease protein toxin is 
called enterotoxigenic B. fragilis (ETBF). ETBF was firstly 
associated with diarrheal disease in lambs85 and it was 
also detected in extraintestinal infections later86.

Mechanism of action 
Biologic activity of BFT was firstly demonstrated on 

the model of human colonic carcinoma epithelial cells 
(HT29/C1). This was the first culture tissue assay proving 
the toxic activity of BFT, which was reflected in the loss of 
cell-to-cell attachments, swelling and other morphological 
changes of treated cells87. As it was clarified later, BFT 
binds to a specific membrane receptor in the intestinal 
epithelial cells88. Its attachment to the cells leads to pro-
teolytic cleavage of E-cadherin89. E-cadherin is associated 
with the T-cell factor dependent nuclear signaling protein 
β-catenin. Following the loss of E-cadherin, the β-catenin 
is released and its nuclear localization takes place leading 
to upregulation of c-Myc transcription and translation. 
As a result, persistent cellular proliferation is induced90. 
Further studies of the BTF’s enterotoxic activity in ApcMin 
mice colonized by ETBF revealed induction of a cascade 
of pro-carcinogenic inflammatory reactions through IL-
17-dependent NF-κB activation and Stat3 signaling in dis-
tal colon epithelial cells (CEC), triggering the myeloid 
cell-dependent distal colon tumorigenesis91. 

Even though the pro-inflammatory and pro-carcino-
genic effect of BFT was confirmed, the exact mechanism 
by which BFT stimulates the pro-carcinogenic signaling re-
lay is still discussed. Recently, Allen et al.92 explained the 
tumorigenic potential of BFT by induction of epigenetic 
changes in CEC correlated with proliferation of tumor 
cells. According to this study, chromatin accessibility is 
immensely affected across the genome by BFT, including 
transcription factor binding sites and resulting in upregu-
lation of transcription factor motifs such as JUND, JDP 
or FOSL1, which are part of mitogen-activated protein 
kinase (MAPK) pathways modulated by BFT. 

At the molecular level, BFT, also called fragilysin, is 
characterized as a 20 kD heat-labile protein toxin belong-
ing to the metalloprotease family93,94. Sequencing of the 
whole bft gene revealed one open reading frame (ORF) of 
1191 nucleotides coding for a 397-residue holotoxin pro-
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tein of 44.4 kDa. BFT is synthesized as a 379 amino acid 
protoxin, which becomes a biologically active protein after 
crossing cytoplasmic membrane. As a result, the active 
toxin of 186 residues with a molecular mass of 20.7 kDa 
is secreted. Comparison of the known bft gene sequences 
revealed three regions of reduced homology. On the bases 
of these data, BFT can be divided into three isoforms 
(BFT-1, BFT-2 and Korea-BFT), all acting by cleavage of 
E-cadherin protein89,95,96. 

Supporting evidence
Familial adenomatous polyposis (FAP) is one of the 

hereditary syndromes caused by APC mutation which 
almost always leads to colon tumor formation. Colonic 
mucosa from patients with FAP was examined for tumori-
genic bacteria including B. fragilis in the study of Dejea et 
al.97. Both B. fragilis and the bft gene were highly enriched 
in FAP patients' colonic mucosa compared to healthy in-
dividuals. Furthermore, tumour-prone mice colonized 
with ETBF showed increased interleukin-17 in the colon 
and DNA damage in colonic epithelium with faster tu-
mour onset and higher mortality97. These data correspond 
to the results of Chung et al.91, suggesting the importance 
of the TH17-dependent pathway in BFT induced colon 
carcinogenesis91.

Potential for screening
Several studies that rely on PCR detection of the bft 

gene in stool support its usefulness as a CRC marker. An 
increased prevalence of ETBF was detected in CRC stool 
samples (P=0.009) compared to controls84. Similar results 
(P<0.05) were reported by Haghi et al.98 later. Moreover, 
the bft gene presence in colonic mucosa is highest in late-
stage CRC among different studies98-100. These data sug-

gest the association of ETBF with CRC progression, and, 
hence, its detection in patients would refer to higher risk 
of CRC diagnosis. 

Open questions and limitations
Undoubtedly, the significantly increased prevalence 

of ETBF in colonic mucosa of CRC patients, together 
with the revealed mechanisms of BFT action, represents a 
strong evidence for its role in CRC etiology. However, pos-
sible differences in the biological and tumorigenic activity 
of different BFT subtypes are still matter of discussion. 
Presumed increased BFT-2 biological activity101 led re-
searchers to identification of particular bft gene isoforms 
in stool samples from CRC patients. However, the ob-
served prevalence of BFT isoforms in samples from CRC 
patients varied among different studies. The highest fre-
quency of the bft2 subtype was found by Boleij et al.99 and 
Haghi et al.98, whereas Zamani et al.102 reported bft1 as 
the most prevalent subtype followed by bft2. Furthermore, 
it has also been suggested that poor sensitivity may limit 
the accuracy of ETBF detection in stool samples, includ-
ing the detection of particular isoforms103. Last but not 
least, small numbers of patients included in the studies 
published so far represent a limiting factor that needs to 
be resolved.

Standpoint on suitability and feasibility for screening 
purposes

Once the potential technical problems with sensitivity 
and specificity of bft-gene detection assays are resolved, 
ETBF indisputably represents the most promising CRC 
risk marker suitable for validation in broader proof-of-
concept screening studies, right after and best in parallel 
to colibactin detection.

Table 2. Summary of most informative studies published on the toxins reviewed, including our standpoint  
on their suitability in CRC screening.

Colibactin Cytolethal  
distending toxin 

(CDT)

Cytotoxic  
necrotizing  

factor (CNF)

Cycle inhibiting 
factor (CIF)

Bacteroides  
fragilis toxin 

(BFT)
Action Double-strand 

breaks
Double-strand 

breaks
Cytokinesis  
interference

G2-arrest Persistent  
proliferation

Reference 16 53 53 53 53 84 97
Number of all study subjects 239 107 107 107 107 96 48
Number of CRC († FAP) patients 39 38 38 38 38 56 25†
Number of cyclomodulin 
-positive CRC († FAP) patients

22 21 6 15 3 21 15†

Sensitivity* 56% 55% 16% 40% 8% 38% 60%  

Specificity* 73% 61% 91% 73% 96% 88% 70%
Suitable for screening yes no conditionally  

yes**
no yes

n.a. – data not available
* The values do not represent true values of sensitivity and specificity established by properly conducted clinical studies; they are only estimates 
based on published data (see appropriate Ref.).
** The potential contribution of CNF detection to increased sensitivity and/or specificity of CRC screening based on colibactin detection has 
to be established only.
† FAP = familial adenomatous polyposis
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CONCLUSION

To conclude, we concisely summarize the data avail-
able on the toxins reviewed in Table 2, including our es-
timate of their potential in CRC screening. As already 
described above, nowadays, non-invasive screening 
of CRC relies on detection of occult bleeding in stool 
(FOBT). This enables detection of around 80% of new as-
ymptomatic CRC cases and 50-60% of adenomatous pol-
yps. Although none of the toxins summarized in Table 2 
does reach an estimated sensitivity comparable to FOBT, 
it is still feasible that some of them may improve the per-
formance of CRC screening if combined with FOBT. This 
may happen if toxins would either enable detection of at 
least a part of the FOBT-negative CRC and adenoma cas-
es, or identify person at increased risk of sporadic CRC. 
These would subsequently be better motivated to undergo 
frequent CRC screening regularly.

Unfortunately, no data from prospective clinical 
studies, which would include FOBT complemented by 
toxin detection in parallel, have been published so far. 
Undoubtedly, colibactin detection is the most promising 
complementary test for such type of studies in near future. 
On the contrary, CDT and CIF are most probably of no 
use, whereas the potential of CNF has to be determined 
only. However, because both the colibactin-positive and 
CDT-positive isolates are typically recruited from the E. 
coli phylogroup B2 strains, the chance of additive effect is 
rather low. In contrast, the B. fragilis toxin (BFT) positive 
cases can be expected not to overlap too much with coli-
bactin-positive cases, both because of the different mode 
of action and also because of production by different 
bacterial species. This assumption is in accordance with 
the detection of both colibactin and BFT in the mucosal 
colonic biofilms of 13 cases of familial adenomatous pol-
yposis compared to 4 cases being positive for colibactin 
only and 2 cases for BFT only97. Despite the small number 
(n=25) of cases, this unique study strongly suggests that 
the colibactin and BFT are the best candidates for evalu-
ation of their potential to improve the performance of 
current CRC screening strategies.

Search strategy and selection criteria
Data for this article were identified by searches of 

PubMed using the terms “colorectal cancer”, “entero-
toxin”, “Escherichia coli”, “screening” and combinations 
of these terms, and by following references from relevant 
articles. We gave preference to publications presenting 
larger cohorts and using sound methodology. Citations 
from respectable journals were given special weight. Our 
own experience was also included.
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