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The role of interleukin 22 in multiple sclerosis and its association  
with c-Maf and AHR
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The aim of this paper was to summarise knowledge of IL-22 involvement in multiple sclerosis (MS) and the possible 
link between IL-22 and two transcription factors – AHR and c-Maf. The conclusion is that despite numerous studies, 
the exact role of IL-22 in the pathogenesis of MS is still unknown.  The expression and function of c-Maf in MS have not 
been studied. It seems that the functions of c-Maf and AHR are at least partly connected with IL-22, as both directly or 
indirectly influence the regulation of IL-22 expression. This possible connection has never been studied in MS. 
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INTRODUCTION

IL-22 is one of the pro-inflammatory cytokines which 
are most probably important in the pathogenesis of nu-
merous autoimmune diseases, including multiple sclero-
sis1. IL-22- and Th22-oriented therapies provide optimism 
for a significant improvement in the treatment of a num-
ber of autoimmune diseases2. The current paper serves 
two main purposes. The first is to summarise the current 
state of research on IL-22 in MS. The second is to link 
the function of IL-22 and two transcription factors –  
c-Maf and AHR.

IL-22

Interleukin 22 belongs to the interleukin 10 family 
along with IL-10, IL-19, IL-20, IL-24, IL-26 and IL-28A, 
IL-28B, IL-29 (ref.3). Initially, it was believed to be a Th1-
spectrum cytokine. Further investigations disproved this 
and identified Th17 and Th22 lymphocytes as its main 
source. Apart from these subpopulations, IL-22 is also 
produced by mast cells, CD11c+ dendritic cells, NK22 
cells, γδ T, NKT and LTi lymphocytes3. The role of IL-22 
is two-fold – it has significant pro-inflammatory potential 
and it may also exhibit anti-inflammatory function3. The 
receptor for IL-22 has a heterodimeric structure; it is com-
posed of IL-10R2 and IL-22R1 (ref.4). The main binding 
point for IL-22 is the chain of its proper receptor – the 
IL-22R1 and the strength of the binding is increased by 
the IL-10 receptor chain, which stabilizes the interleukin-
receptor complex. The STAT3 pathway is activated once 
the IL-22 binds to the receptor5.

Co-stimulation with IL-1β and IL-23 was found to pro-
mote IL-22 in mast cell progenitors6. While concomitant 

stimulation of Th17 by IL-17, IL-21 and IL-23 results in se-
cretion of a mixture of cytokines, including IL-22 (ref.7,8). 
Although various lymphocyte subpopulations may differ-
ently regulate IL-22 secretion e.g. among the γδ T cells it 
can be also stimulated by TLRs, IL-23 seems crucial for 
this process among various cell subsets8. The production 
of IL-22 may be decreased by the stimulation of c-Maf 
(ref.9) and probably also AHR (ref.10). The latter most 
probably depends on the ligand used. Diesel exhaust par-
ticle polycyclic aromatic hydrocarbons were found to sig-
nificantly promote IL-22 production by peripheral blood 
mononuclear cells in asthmatic patients11. Similarly, IL-22 
production by innate lymphoid cells in a murine model 
of hepatitis was observed to be up-regulated by AHR and 
RORγT (ref.12). Moreover, expression of IL-22 is prob-
ably also increased in hypoxia in an HIF-1α-dependent 
mechanism13. An in-depth summary of IL-22 secretion 
regulation can be found in Dudakov et al.8.

IL-22 is involved in a number of processes – both 
physiological and pathological. It is probably involved in 
the pathogenesis of atopic dermatitis and asthma14. Its 
level is increased in an animal model of rheumatoid arthri-
tis15 and IL-22 along with IL-4 may be important during 
pregnancy16. It is also important for proper regeneration 
of the intestinal epithelium17,18 and maintenance of the 
intestinal barrier19. IL-22 is also considered an important 
cancer-promoting cytokine20.

The serum IL-22 level is increased during relapse 
in relapsing-remitting MS patients compared to healthy 
controls, in patients with remission and those with pri-
mary progressive MS  (ref.21). Similarly, an increase in 
CD4+IL-22+ percentage in peripheral blood was observed 
by N. Muls et al. during relapse when compared to re-
mission22. Similarly, the Th22 percentage in peripheral 
blood was found to be higher in MS patients than healthy 
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Fig. 1. The role of IL-22 in the course of MS is still ambiguous and not fully understood. This scheme shows the 
experimentally-proven (continued line) and hypothetical (dashed line) effects of IL-22 in MS. 

Fig. 2. The scheme shows the relation between IL-22, AHR and c-Maf. The demethylation of FoxP3 and methylation 
of IL-17 promoter requires prior proper AHR stimulation e.g. by FICZ. On the other hand, activated by Notch, AHR 
along with STAT3 and RORγT potently promote IL-22 secretion in Th17 cells. Similarly activation of AHR by FICZ 
increases IL-22 production. Bold green line indicate positive influence (induction or activation) while red line nega-
tive influence (supression).
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controls23-25. Nicol et al. described a novel subpopulation 
of T cytotoxic lymphocytes – Tc17 with intermediate 
expression of CD161 as another source of IL-22 in MS 
patients26. Increase in serum IL-22 level and Th22 per-
centage were also confirmed in MS and neuromyelitis op-
tica27. The increase in IL-22 and IL-17 levels corresponds 
to fresh lesions in the central nervous system during MS 
(ref.28). Perriard et al. showed that IL-22 is present in both 
white and gray matter in healthy controls and MS patients 
and that it is also involved in the stimulation of astrocyte 
survival21. On the other hand, Zhen et al. noted that stimu-
lation of oligodendrocytes with IL-22 leads to increased 
Fas expression, which may result in increased apoptosis23. 
This is probably attenuated in healthy individuals by the 
Treg cells as an in vitro study of mouse Treg cells revealed 
their potential to lower the overexpression of Fas in oli-
godendrocytes. This effect was, however, not observed in 
the case of Treg cells from mice with EAE. This may be 
related to decreased level of FOXP3 expression in those 
cells, which is also probably related to IL-22 (ref.23).

Tahrali et al. noticed an increased percentage of IL-
22-producing NK cells in MS patients. In  further in vitro 
tests, they observed that stimulation with IL-4 had nearly 
no effect on the IL-22 secretion by those cells – despite 
the fact that in healthy subjects IL-4 stimulation causes 
NK22 cell differentiation into an NK2 subpopulation and 
cessation of IL-22 secretion29. The level of IL-22 in the 
central nervous system during the course of EAE rises 
with a peak at the time-point of maximal disability and 
a significant decrease during remission30. Similar results 
were obtained by Kreymborg et al., who studied IL-22 
expression in the central nervous system infiltrating lym-
phocytes in various phases of EAE (ref.31). IL-22 turned 
out to be unnecessary for EAE to develop – IL-22-gene-
deficient mice developed the disease similarly to wild type 
mice31. In an in vitro investigation stimulation of lympho-
cytes from MS patients with melatonin led to a significant 
decrease in IL-22 expression32. This appears to be related 
to a phenomenon observed by Scandinavian scientists. 
They noted the increased risk of MS in those who worked 
night-shifts at a young age. That effect was ascribed to 
disturbance in the circadian rythm33,34. Another potential 
regulator of IL-22 secretion is bacterial lipopolysaccha-
ride (LPS) – by the regulation of dendritic cell function it 
was observed to lower the expression of IL-22 along with 
IL-17A, IL-17F and IL-21 in Th lymphocytes35.

Physical and mental fatigue is a major symptom of 
MS. According to Rohit Bakshi, it is even the most preva-
lent one, and for 40% of patients also the one which most 
limits their daily activity36. The occurrence and intensity 
of fatigue are linked, among other factors, to the influence 

of various cytokines, most commonly TNF-α and IFN-γ 
(ref.37). An initial study by a Brazilian team revealed a 
possible link of fatigue with IL-22 (ref.38). An in vitro 
study revealed higher potential for IL-22 production by 
lymphocytes from MS patients with significant fatigue 
compared to those without fatigue. The same team in an-
other study noted that a 12-week training not only lowered 
the fatigue, but also the potential for IL-22 production39. 
Further studies are needed for an in-depth understanding 
of this phenomenon. 

The deregulation of IL-22 levels may be related both 
to the change in IL-22 expression and in its serum bind-
ing protein – the IL-22BP (IL-22RA2). IL-22 as the only 
cytokine of the IL-10-family has its own soluble binding 
protein and, moreover, it has higher affinity for IL-22 than 
the membrane receptor40. This indicates the importance 
of IL-22 level regulation and the potential risk related to 
the disturbance in IL-22 level.

No significant difference in serum IL-22BP level was 
noted in MS patients, but an increase in its mRNA was 
observed in monocytes and dendritic cells21. It seems 
that during relapse IL-22 escapes the control of IL-22BP. 
Moreover, some SNPs of the gene for the IL-22 soluble 
receptor (IL22RA2) are probably linked to the increased 
risk of both EAE and MS (ref.41). At the same time, an-
other study revealed that IL22ra2-deficient mice showed a 
milder course of EAE, which suggests a protective role of 
IL-22 as well as potential negative effects of an increased 
IL-22BP serum level42.

c-Maf

c-Maf is a transcription factor with numerous func-
tions e.g. it is necessary for the TGF-β mediated suppres-
sion of IL-22 production in Th17 (ref.9) or along with 
Sox5 for the expression of RORγT in Th17 cells43. 

The c-Maf synthesis is mediated by IL-6, which, in 
turn, leads to an increased IL-21 production by the activa-
tion of IL-21 promoter and CNS-2 (ref.44). IL-21 stimu-
lates IL-22 expression in Th lymphocytes45. As previously 
mentioned, TGF-β causes inhibition of the described 
mechanism44. Transgenic mice lacking c-Maf have a sig-
nificantly lower IL-21 expression than wild-type mice46.

C-Maf may act agonistically with AHR. The IL-27-
induced AHR joins c-Maf, which leads to the activation 
of IL-10 and IL-21 promoters in Treg1 lymphocytes47. 
Moreover, IL-27 by c-Maf stimulation also increases IL-
21 synthesis. By autocrine signaling, the latter stimulates 
and promotes the survival of IL-10-secreting Treg1 (ref.48). 
Increased level of IL-27 and IL-33 in the central nervous 

Table 1. Selected AHR ligands divided into agonists, antagonists and selective modulators.

Type Molecules References

Agonists TCDD, β-NF (β-Naphthoflavone), FICZ (6-Formylindolo[3,2-b]carbazole),  
ITE (Methyl 2-(1H-indole-3-carbonyl)-1,3-thiazole-4-carboxylate)

56,71,73–75

Antagonists GNF-351 76
Selective modulators SGA-360 77
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system seems to alleviate the symptoms of EAE (ref.49). 
Both c-Maf and AHR seems to be partially regulated by 
PTIP – under no PTIP influence the production of IL-
22 rises while that of IL-17 decreases50. Generally, c-Maf 
seems to block the expression of IL-22 in Th17, while 
AHR along with RORγT promote it9,51. On the other 
hand, as previously mentioned, c-Maf along with Sox5 
promotes expression of RORγT in Th17, thus indirectly 
promoting IL-22 production43.

Besides, c-Maf promotes IL-4 secretion by joining its 
promotor52-54. Nevertheless, c-Maf can not freely regulate 
any of those cytokines; the exact type of phosphorylation 
of c-Maf determines which one is affected52. In the case 
of IL-4 regulation, the degree of stimulation positively 
correlates with the phosphorylation level of tyrosine in c-
Maf, namely Tyr(21), Tyr(92), Tyr(131) (ref.53). Currently, 
there is no data on the expression of c-Maf in MS patients.

AHR

AHR is a transcription factor involved in the dif-
ferentiation of Th17 and Treg cells, it is also one of the 
transcription factors involved in regulation of IL-22 pro-
duction51. TCDD, a strong AHR agonist, is one of the 
most commonly used molecules in studies involving the 
AHR function. In a mouse model of Crohn disease, the 
application of TCDD led to strong symptom attenuation 
due to induction of Treg and suppression of Th17 lym-
phocytes55. The effect is related to epigenetic changes – 
increased methylation of IL-17 promoter and concomitant 
demethylation of FOXP3 promoter. That action was also 
proved in another study on mouse model of Crohn disease 
by Benson and Shepard56 as well as in autoimmune uveitis 
by Zhang et al.57. Quintana et al. in an EAE study discov-
ered that TCDD-mediated activation of AHR leads to the 
attenuation of symptoms, which is probably related to 
the observed Th17/Treg balance shift towards Treg, while 
the use of FICZ, another AHR agonist, had the opposite 
effect58. Similarly, Hanieh and Alzahrani observed EAE 
symptom attenuation after TCDD-mediated AHR activa-
tion and ascribed it to the increased miR-132 expression 
in Th lymphocytes59. On the other hand, the effect of both 
FICZ and TCDD may depend also on other factors like 
the route of administration and immune cells affected60. 
It is worth noting that miR-132 performs opposite func-
tions in B lymphocytes – it increases the production of 
pro-inflammatory cytokines and therefore may escalate 
EAE or MS symptoms61. It was also noticed that AHR is 
involved in DHEA-mediated amelioration of EAE symp-
toms62. On the other hand, AHR-deficient mice develop 
milder course of EAE (ref.63).

AHR is an important regulator of IL-22 transcrip-
tion51. In fact, it seems to be essential for IL-22 production 
by γδ T (ref.64), Th22 and Th17 (ref.65) cells. Activation by 
FICZ leads to a significant upregulation of production10. 
Moreover, environmental pollutants like polycyclic aro-
matic hydrocarbons may upregulate the activity of AHR 

by inhibition of cytochrome P4501, which is responsible 
for FICZ cleavage66. Another important site for AHR-
related immunoregulation is the intestines, where the 
commensal bacteria produce significant amounts of AHR 
ligands and therefore regulate the immune system67. This 
is especially important as the intestinal microbiota may 
be involved in the pathogenesis of multiple sclerosis68.

The literal effect depends on the type of AHR ligand. 
These are divided into three groups – agonists, antago-
nists and selective modulators (Table 1). Such a division 
is related to the activation or inhibition of two possible 
pathways – X/DRE and non-X/DRE. An agonist acti-
vates both, an antagonist inhibits both, and a selective 
modulator activates one while blocking the other. The X/
DRE pathway is related to the relocation of AHR to the 
nucleoplasm and its direct influence on the expression 
of DNA. The activation of non-X/DRE leads to direct 
protein-protein interaction, and only indirectly regulates 
the expression of DNA. AHR antagonists cause the Treg/
Th17 balance shift towards Treg, while agonists trigger 
opposite effects69. Nevertheless, there are some known 
exceptions; the before-mentioned TCDD, despite being 
an agonist, causes a Th17/Treg balance shift towards Treg. 
In a study by Gagliani et al., concomitant stimulation 
with TGF-β1 and FICZ causes the differentiation of Th17 
into Treg1 (ref.70). AHR may not be necessary for the 
effect, but it was also noted that AHR antagonists cause 
significant decrease in the speed of the process. The use 
of ITE, another AHR agonist, also causes an increase 
in Treg percentage71. It appears that the exact effect of 
AHR agonist depends on the dose and time of the AHR 
activation. A low dose and short period of activation may 
lead to the expansion of Th17 lymphocytes, while larger 
dose and longer period cause an increase in Treg cells72.

CONCLUSION

Despite numerous studies, the exact role of IL-22 in 
the pathogenesis of MS is still unknown.  The expression 
and function of c-Maf in MS have not been studied. It 
seems that the functions of c-Maf and AHR are at least 
partially connected with IL-22, as both directly or indi-
rectly influence the regulation of IL-22 expression. This 
possible connection has never been studied in MS, either.

Search strategy and selection criteria
The aim of the paper was to summarise the knowl-

edge of IL-22 involvement in multiple sclerosis and the 
possible link between IL-22 and two transcription factors 
– AHR and c-Maf. Therefore, Pubmed and Scopus were 
searched for all relevant studies. Following keywords were 
used: “MS”, “multiple sclerosis”, “EAE”, “experimental 
autoimmune encephalomyelitis”, “IL-22”, “interleukin 
22”, “AHR”, “c-Maf” and the mixtures thereof. The ini-
tial search was performed in 2017 and was then updated 
in 2018 and in January 2019. Only peer reviewed papers 
written in English were included.
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ABBREVIATIONS 

AHR, Aryl hydrocarbon receptor; c-Maf, Transcription 
factor Maf; CD, Cluster of differentiation (designation); 
CNS-2, Conserved noncoding sequence-2; DHEA, 
Dehydroepiandrosterone; EAE, Experimental autoim-
mune encephalomyelitis; FICZ, 6-formylindolo[3,2-b]
carbazole; FOXP3, Forkhead box p3; HIF-1α, Hypoxia-
inducible factor 1α; IFN-γ, Interferon γ; IL, Interleukin; 
IL-10R2, Interleukin 10 receptor subunit 2; IL-22BP/
IL-22RA2, Interleukin 22 binding protein/soluble re-
ceptor; IL-22R1, Interleukin 22 receptor subunit 1; Lti, 
Lymphoid tissue inducer cell; miR-132, microRNA-132; 
MS, Multiple sclerosis; NK, Natural killer cell; NKT, 
Natural killer T cell; PTIP,  Pax transactivation domain-
interacting protein; RORγT, Retinoic acid receptor-related 
orphan receptor gamma; SNP, Single nucleotide polymor-
phism; Sox5, Sex-determining region Y (SRY)-Related 
high mobility group (HMG)-box 5; STAT3, Signal trans-
ducer and activator of transcription 3; Tc, T cytotoxic 
lymphocyte; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; 
TGF-β, Tumour growth factor β; Th, T helper lympho-
cyte; TNF-α, Tumor necrosis factor α; Treg, T regulatory 
lymphocyte; Tyr, Tyrosine; X/DRE, Xenobiotic or dioxin 
response elements.
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