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Heterogeneity of molecular forms of dipeptidyl peptidase-IV and fibroblast
activation protein in human glioblastomas

Ivana Matrasova, Petr Busek, Eva Balaziova, Aleksi Sedo

Background and Aims. Proteolytic enzymes contribute to the progression of various cancers. We previously reported
increased expression of the proline specific peptidases dipeptidyl peptidase-IV (DPP-1V) and its closest paralogue
fibroblast activation protein (FAP) in human glioblastomas. Here we analyze the molecular heterogeneity of DPP-IV
and FAP in glioblastomas.

Methods. ELISA, isoelectric focusing, 1D and 2D electrophoresis followed by WB or enzyme overlay assay were utilized
to analyze DPP-IV and FAP isoforms. Cell fractionation using a Percoll gradient and deglycosylation with PNGase F were
performed to analyze the possible basis of DPP-IV and FAP microheterogeneity.

Results. Molecular forms of DPP-IV with an estimated molecular weight of 140-160 kDa and a pl predominantly 5.8
were detected in human glioblastoma; in some tumors additional isoforms with a more acidic (3.5-5.5) as well as al-
kaline (8.1) pl were revealed. Using 2D electrophoresis, two to three molecular forms of FAP with an alkaline (7.0-8.5)
pl and an estimated MW of 120-140 kDa were identified in glioblastoma tissues. In glioma cell lines in vitro, several
isoforms of both enzymes were expressed, however the alkalic forms present in glioblastoma tissues were not detected.
Removal of N-linked oligosaccharides decreased the estimated molecular weight of both enzymes; the overall pattern
of molecular forms nevertheless remained unchanged.

Conclusion. Several isoforms of DPP-IV and FAP are present in glioblastoma tissue. The absence of alkaline isoforms of
both enzymes in glioma cell lines however suggests that isoforms from other, most likely stromal, cell types contribute

to the overall pattern seen in glioblastoma tissues.
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INTRODUCTION

Malignant gliomas are the most frequent primary tu-
mors of the central nervous system!. Of these, glioblas-
tomas (grade IV gliomas) represent the most malignant
form with almost 100% mortality, aggressive and diffuse
infiltrative growth and limited response to therapy?. As
reviewed previously, several proteases were found to be
deregulated in gliomas and critically contribute to the
disease progression’.

The almost ubiquitously expressed dipeptidyl pepti-
dase-IV (DPP-IV, EC 3.4.14.5) and its closest paralogue
fibroblast activation protein (FAP, EC 3.4.21.B28), char-
acteristically expressed in the cancer and remodeling
tissues, were implicated in the pathogenesis of various
cancers. The functional consequence of their dysregula-
tion may be cancer specific*®, possibly depending both on
the available substrates of particular protease and on the
cell population expressing the enzymes within the given
tumor. The post-proline hydrolytic activity of DPP-IV and
FAP is important for the processing of biologically active
peptides and in the case of FAP also for the remodeling of
the extracellular matrix™®. Both proteases are involved in
the regulation of cell differentiation, adhesion and migra-
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tion by their proteolytic activity and also non-hydrolytic
interactions®'°, Our previous reports demonstrated that
the expression DPP-IV and FAP is increased in glioblas-
tomas'"'?. The data on their pathogenetic role in brain
tumors is limited- DPP-IV inhibits glioma cell growth, in
large part independently of its enzymatic activity'®, and
FAP likely influences the interaction of glioma cells with
the surrounding extracellular matrix (our unpublished
results and ref.%).

DPP-IV and FAP are type II- transmembrane proteins
that are enzymatically active as homodimers with a mo-
lecular weight (MW) typically of 220-240 kDa and 170
kDa, respectively'*!s. Enzymatically active soluble forms
of both enzymes lacking the transmembrane region are
found in blood plasma, and in the case of DPP-IV also
in other bodily fluids, but their origin is largely specula-
tive'®!”. In addition to these forms which are probably
the result of shedding from the plasma membrane by an
unknown protease, substantial molecular heterogeneity
has been reported for both DPP-IV and FAP from vari-
ous sources, and these molecular forms are thought to
have unique pathophysiological functions. A spectrum of
pl forms of DPP-IV was described in human plasma's"
and placenta?. Multiple molecular forms of DPP-IV were
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also identified in normal and cancer lung tissues®' and in
glioma cells in vitro*>?. Interestingly, chemically induced
differentiation of C6 glioma cells was accompanied by
changes in the proportion of the DPP-IV isoforms®. In T
lymphocytes, Kahne et al. identified 11 immunoreactive
molecular forms of DPP-IV with pl range between 3.5
and 5.9. In addition, the expression pattern and subcel-
lular localization of these isoforms was affected by the
mitogenic stimulation of the cells?. The data on recombi-
nantly produced DPP-IV suggest that the heterogeneity of
molecular forms of DPP-IV may in part be a consequence
of the differential glycosylation of the enzyme?.

In contrast to DPP-IV for which only one mRNA has
been reported?®, two alternative splicing forms of FAP
were found in melanoma cells: one encoding a 97 kDa
full-length transmembrane monomeric form and a short-
ened form encoding the 50-70 kDa C terminal part of
the protein containing the catalytic region, but lacking a
large part of the N terminal including the whole trans-
membrane and intracellular domain?’. Furthermore, trans-
genic FAP lacking the cytoplasmic and transmembrane
domains was converted into 50-70 kDa forms by putative
EDTA-sensitive activators and the resulting shortened
forms of FAP exhibited up to a 7 fold increase in the
gelatinolytic activity?®. In addition, the FAP amino acid
sequence contains 5 potential glycosylation sites'®, which
may give rise to the existence of molecular forms similarly
to DPP-IV. Their presence has nevertheless not been ex-
plored so far. Our study for the first time analyzes the
molecular forms of DPP-IV and FAP in human glioma
tissues and their possible origin.

MATERIAL AND METHODS

Brain tissue samples

Brain tissue samples were collected from 51 patients
undergoing astrocytic tumor resection, non-tumorous
brain specimens were obtained from 15 patients in
whom brain surgery was performed for drug-resistant
temporal lobe epilepsy'?. Written informed consent was
obtained from the patients before their entry into the
study according to the guidelines of institutional Ethics
Committee conducted in accordance with the Declaration
of Helsinki. The tumors were graded in compliance with
the 2007 WHO Classification Criteria. Tissue samples,
clear of macroscopic vessels and necrosis, were frozen
on solid CO, and then stored at -30 °C.

Human glioma cell lines

U138MG, USTMG and U118MG (WHO grade 1V,
acquired from Cell Line Services, Germany) were cul-
tured on the Nunc tissue plastic (Thermo scientific,
Langenselbold, Germany) in the Dulbecco’s modi-
fied Eagle’s medium (DMEM; Sigma, Prague, Czech
Republic) supplemented with 10% foetal calf serum (FCS;
Sigma) under a humidified (90%) atmosphere of 5% CO,
and 95% air at 37 °C.
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Non-denaturing, non-reducing SDS polyacrylamide
electrophoresis (SDS PAGE)

Tissue samples were homogenized in ice-cold phos-
phate buffered saline (PBS) pH 6.0 with an Ultra-Turrax
homogenizer fitted with an S§N-5G probe (IKA, Staufen,
Germany) to a final 15% w/v concentration. Homogenates
were mixed 1:1 with a lysis buffer (10 mM Tris-HCI pH
1.5, containing 1 mM EGTA, 1 mM Na EDTA, 1%
Triton X-100, 0.1% SDS, and 10% glycerol) supplemented
with protease inhibitors (final concentration pepstatin
A 25 uM, AEBSF 200 uM, E-64 50 uM) and centrifuged
at 27 000 g, 4 °C for 30 min. Total cell lysates (10 x 10°
cells/mL) were prepared on ice in a lysis buffer supple-
mented with protease inhibitors. To preserve the native
enzyme structure and enzymatic activity, all samples were
analyzed under non-reducing and non-denaturing condi-
tions in discontinuous (4% stacking, 7% resolving) 1.5mm
gels. Samples were mixed with 4x Laemmli sample buf-
fer, 40 ug of total protein assayed according to Lowry?
were loaded on the gels. The separation was carried out
in an electrode buffer containing 25 mM Tris, 192 mM
glycine and 0.1% SDS, pH 8.3 at constant voltage (60 V
for 30 min followed by 140 V for 90 min).

ELISA

The DPP-IV and FAP proteins were assayed in tissue
lysates by DuoSet DPP-IV and DuoSet FAP ELISA kits
(DY1180 and DY 3715, R&D Systems, Abingdon, UK)
according to the manufacturer “s instructions. Briefly, the
96-well transparent plate was coated by capture antibodies
diluted in PBS (anti DPP-IV, cat.no. 842127, 2 ug/mL and
anti FAP, cat.no. 842997, 1 ug/mL; overnight incubation
at room temperature (RT)). After washing and block-
ing the plate in 1% bovine serum albumin in PBS, the
samples were applied for two hours. After washing, bioti-
nylated detection antibodies (1 ug/mL) and streptavidin-
horseradish peroxidase were applied. Substrate Reagent
Pack (DY999, R&D Systems) was used for the visual-
ization. The reaction was terminated by 2M sulphuric
acid. The absorbance of samples was measured at 450 nm
using the microplate reader Sunrise (Tecan, Malmedorf,
Switzerland). The measured absorbance values were cor-
rected by subtracting the absorbance values obtained at a
reference wavelength of 570 nm. The resulting differential
absorbance values were used for the constructing the cali-
bration curves and data evaluation.

Western blot analysis (immunoblotting)

Gels were equilibrated in Bjerrum and Schafer-Nielsen
transfer buffer containing 20% methanol. Proteins were
transferred onto the PVDF membrane using a semidry
blotting system (Bio-Rad, USA). PVDF membranes were
thoroughly rinsed in 0.05% Tween 20 in Tris Buffer Saline
pH 7.5 (0.05% TTBS) and blocked in 5% non-fat dry milk
(NFDM) prior to incubation with the primary antibod-
ies at 4°C, overnight. Membrane washing in TTBS was
followed by incubation with a horse-reddish peroxidase
conjugated secondary antibody at RT for 60 min. The
used antibodies are listed in Table I. The blots were de-
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Table 1. Antibodies used for immunoblotting.

Blocking Primary Species/ clone/

Secondary Species/ clone

Agent Antibody Company Dilution Antibody Company Dilution

5% NFDM  Anti-Human DPP-IV Rat, E19, Vitatex  1:1000 PreAdsorbed Anti-Rat, Goat, Abcam UK 1:20000
USA ab6257

5% NFDM  Anti-Human FAP Rat, D8, Vitatex 1:5000 PreAdsorbed Anti-Rat, Goat, Abcam UK 1:20000
USA ab6257

5% NFDM  Anti-GAPDH Rabbit, 1:1000 Anti-Rabbit Sheep, Amesrham UK 1:20000
Merck-Millipore
USA

5% NFDM  Membrane Fraction Abl140365 1:500 Secondary Antibody Ab140365 1:500

WB Cocktail Abcam, UK Cocktail Abcam, UK

NFDM= non-fat dry milk

veloped using Luminata Forte (Merck-Millipore, USA)
and exposed to a photographic film (Hyperfilm™ ECL,
Amersham).

DPP-IV enzyme overlay assay

The exopeptidase activity of DPP-IV was visualized by
an enzyme overlay assay using the fluorogenic substrate
7-(Glycyl-L-Prolylamido)-4-methylcoumarin (H-GP-AMC,
final concentration 100 uM). Gels were equilibrated in
phosphate buffer pH 7.5, a cellulose acetate membrane
impregnated with the substrate was placed on the top of
the gel and covered by a glass plate to prevent evapora-
tion. The signal was visualized after 30 min incubation at
37 °C on a transluminator (VilberLourmat, France) with
an excitation wavelength of 360 nm.

Isoelectric focusing and 2D electrophoresis

Tissue samples or cells (10 million/mL) were mechani-
cally homogenized in the sample/rehydration buffer (§ M
urea, 2% CHAPS, 50 mM DTT, 0.2% w/v BioLyte 3/10
ampholytes, protease inhibitors) and incubated on an
orbital shaker for 30 min at RT. Samples were cleared
by centrifugation (27 000 g, 20 °C for 30 min). Protein
concentration was determined by the Bradford assay
(Bio-Rad, USA) according to the manufacturer’s instruc-
tions. 150 ug of total protein was loaded onto 7 cm long
Immobilized pH gradient (IPG) strips (pH 3-10 or pH
4-7, Bio-Rad, USA), passive rehydration was performed at
RT, for 12-16 h. Isoelectric focusing (IEF) was performed
under the following conditions: 250 V for 20 min (linear
ramp); 4 000 V for 120 min (linear ramp); 10 000 VH at
4 000V (rapid ramp). After isoelectric focusing, the IPG
strips were incubated in the equilibration buffer I (6 M
urea, 30% glycerol, 2% CHAPS, 50 mM Tris pH 6.8 and
1% DTT) for 15 min followed by incubation in the equili-
bration buffer II (6 M urea, 30% glycerol, 2% CHAPS, 50
mM Tris pH 6.8 and 2.5% IAA) for additional 15 min.
IPG strips were then either used for the visualization of
the exopeptidase activity of DPP-IV by an enzyme overlay
assay, or the separation on 8% polyacrylamide gels in the
second dimension was performed at 140V.
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Deglycosylation by peptide-N-glycosidase F

Deglycosylation by peptide-N-glycosidase F (PNGase
F, E.C. 3.5.1.52, Sigma Aldrich, USA) was performed ac-
cording to the manufacturer’s instructions with the follow-
ing modifications: cell lysates were prepared as described
above and 20 ug of total native protein was subjected to
deglycosylation by 0.01 unit of PNGase F at 37 °C for 24
h. Control samples were incubated without PNGase F un-
der the same conditions. The samples were subsequently
mixed with the 4x Laemmli sample buffer and separated
using non-denaturing, non-reducing SDS PAGE.

Cell fractionation using continuous Percoll gradient

Cells were mildly homogenized in ice-cold isotonic
medium (40 million/mL, 250 mM sucrose, 20 mM Tris-
HCI, 1 mM EDTA, 3 mM MgCl,) pH 7.6 supplemented
with protease inhibitors in a 2 mL Dounce-tissue grinder
(SigmaAldrich, Mexico) for 5 min. Nuclei were removed
by centrifugation at 250 g, 4 °C for 10min, the super-
natant was applied on top of a 4 mL of 27.4% Percoll
(Pharmacia, Sweden). Ultracentrifugation was performed
at 65 000 g, 4 °C for 60 min (MTX 150 Sorvall, rotor
S560-ST, ThermoScientific). 50 uL fractions were col-
lected and individual subcellular compartments were
identified using the Membrane Fraction WB Cocktail
(Abcam, UK). For IEF, the samples were diluted 1:4 us-
ing the sample/rehydration buffer.

Immunocytochemistry

Cells were cultured on glass coverslips, fixed by 1:1
aceton:methanol for 2 min at RT. Nonspecific binding was
blocked by 10% fetal calf serum plus 1% bovine serum al-
bumin in Tris-buffered saline for 1 hour. The samples were
incubated with the monoclonal primary antibodies anti-
DPP-1V (clone MA 261, 1:100) or anti-FAP (clone F19,
56 ug/mL) overnight at 4°C, followed by AF 488 donkey
anti-mouse IgG (A2120, ThermoFisher Scientific, 1:500,
1 h at RT). 400 uM ToPro (ThermoFisher Scientific)
or 50 ng/mL Hoechst 33258 (Sigma-Aldrich, St. Louis,
USA) added to the solution of the secondary antibodies
were used for nuclear counterstaining. The primary anti-
bodies were omitted in the staining controls. Slides were
mounted in Aqua Polymount (Polysciences, Eppelheim,
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Germany) and viewed on the Olympus IX 81 confocal
microscope equipped with the 488, 543 and 633 nm lasers
(FluoView 300, Olympus, Prague, Czech Republic).

RESULTS

Expression of DPP-IV and FAP increases with increasing
glioma grade

The expression of DPP-IV and FAP was analyzed in
high-grade gliomas (grade IV; n=39, grade III; n=5), low-
grade gliomas (grade II; n=7) and non-tumorous brain
tissue (pharmacoresistant epilepsy; n=15). The concentra-
tion of both DPP-IV and FAP as determined by ELISA
was significantly higher in glioblastomas (Fig. 1); for
DPP-IV, the quantity determined by ELISA correlated
with the DPP-IV enzymatic activity in tissue homogenates
(r=0.79, P<0.05, data not shown). These data confirmed
our previously reported results'! in an independent patient
cohort.

Molecular forms of DPP-IV and FAP in gliomas

All 66 patient samples were simultaneously analyzed
using western blotting and an enzyme overlay assay after
electrophoretic separation under non-denaturing, non-
reducing conditions. The levels of DPP-IV and FAP were
below the detection limit in all samples of the normal
brain tissue (data not shown), but both molecules were de-
tectable in grade III and IV gliomas (Fig. 2A). Substantial
molecular heterogeneity of DPP-IV was present with up
to three DPP-IV immunoreactive bands with an estimated
molecular weight in the range of 140-160 kDa. The cor-
responding DPP-IV hydrolytic activity sensitive to a DPP-
1V inhibitor was detected in the majority of these cases,
suggesting the presence of enzymatically active molecu-
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lar forms of canonical DPP-IV. Interestingly, in several
samples containing only a single DPP-IV immunoposi-
tive band on WB, little or no enzymatic activity could
be detected using the enzyme overlay assay (Fig. 2A).
In contrast to several isoforms of DPP-IV, western blot
analysis of the high-grade glioma tissue samples revealed
only one molecular form of FAP with an electrophoretic
mobility corresponding to 120-140 kDa (Fig. 2A).

Representative glioblastoma samples containing en-
zymatically active DPP-IV were further analyzed using
isoelectric focusing. This confirmed the presence of sev-
eral molecular forms of DPP-IV with the predominant
isoform having pl 5.8. In some of the tumors additional
isoforms with a more acidic (3.5-5.5) as well as alkaline
(8.1) pI were detected (Fig. 2B). FAP immunodetection
after 2D electrophoresis revealed the presence of two to
three forms of FAP with an alkaline (7.0-8.5) pI and an
estimated MW of 120-140 kDa (Fig. 2C).

Similarly to glioblastoma tissues, enzymatically ac-
tive isoforms of DPP-IV with an electrophoretic mobility
between 140-160 kDa were revealed in three permanent
glioma cell lines (Fig. 2A). Using isoelectric focusing,
the DPP-IV hydrolytic activity with a corresponding im-
munopositivity was detected predominantly at pI 5.8 with
a MW of 140 kDa (Fig. 2D). In U118MG cells, which
have the highest DPP-IV expression (data not shown),
additional forms were detectable in the acidic region. FAP
immunopositivity was only identified at an acidic pl be-
tween 4.2-4.8 (MW 140 kDa) and 5.8-6.2 (MW 140-200
kDa) in the three glioma cell lines.

Possible basis of the heterogeneity of DPP-IV and FAP
molecular forms in glioma cells

Our previous results and literature data show that the
majority of DPP-IV and FAP is present in the membrane
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Fig. 1. DPP-IV and FAP expression in grade II-IV gliomas and non-tumorous brain tissue (pharmacoresistant epilepsy). Protein
concentration of A) DPP-IV and B) FAP was assayed using ELISA. **P < 0.01, Kruskal-Wallis test. Horizontal line- median,
boxes- 25-75%, whiskers- range of non-remote values, white triangles- source data, white circles- remote values, asterisks- extremes.
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Fig. 2. Molecular forms of DPP-IV and FAP in human gliomas and glioma cell lines. A) Separation of DPP-IV and FAP molecular
forms using SDS PAGE under non-denaturing and non-reducing conditions. DPP-IV enzymatic activity was detected using mem-
brane overlay assay with and without a specific DPP-IV inhibitor. Inmunodetection of DPP-IV, FAP and GAPDH was performed
after transfer of the proteins to a PVDF membrane. Double dagger- tissues with a single DPP-IV band on WB without corresponding
detectable DPP-IV enzymatic activity. GAPDH- glyceraldehyde phosphate dehydrogenase. B) Detection of the DPP-IV enzymatic
activity in glioblastomas after separation of the molecular forms by isoelectric focusing. C) Immunodetection of FAP in glioblas-
tomas after separation of the molecular forms by 2D electrophoresis. D) Analysis of DPP-IV and FAP molecular forms in human
glioma cell lines using isoelectric focusing and 2D electrophoresis.
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Immunodetection of DPP-IV, FAP and compartment markers in subcellular fractions in U118MG glioma cells. NUC= nuclear
fraction, ER= endoplasmic reticulum fraction, PM= plasma membrane fraction, MIT= mitochondrial fraction. C) Detection of
DPP-IV hydrolytic activity in subcellular fractions after SDS PAGE, and isoelectric focusing in U118MG glioma cells. D) Effect
of deglycosylation on the electrophoretic mobility of DPP-IV and FAP molecular forms expressed in human glioma cell lines.
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fraction, possibly in the form of high molecular weight
oligomeric complexes®®3!. However, in addition to the
plasma membrane, both DPP-IV and FAP are also local-
ized in various intracellular compartments®>** (Fig. 3A).
To assess whether the heterogeneity of molecular forms
of DPP-IV and FAP reflects the presence of specific iso-
forms in subcellular compartments, cell fractionation us-
ing a continuous Percoll gradient was performed. Western
blotting (Fig. 3B) and isoelectric focusing (Fig. 3C) con-
firmed that DPP-IV and FAP were dominantly present
in the plasma membrane and the endoplasmic reticulum
fractions. The estimated MW corresponded to the 140-
160 kDa (DPP-IV) and 120-200 kDa (FAP) observed in
glioma tissues. DPP-IV in the endoplasmic reticulum had
dominantly an acidic pl between 4.4 and 5.1, while the
pl of DPP-IV in the plasma membrane was more alkaline
(4.8-5.8).

We further evaluated whether differential glycosyl-
ation might contribute to the heterogeneity of molecu-
lar forms of both molecules. Upon deglycosylation with
PNGase F the estimated molecular weight decreased
by approximately 10 kDa in comparison to non-treated
samples. The overall pattern of molecular forms of both
DPP-IV and FAP nevertheless remained unchanged (Fig.
3D). The removal of N-linked saccharides by PNGase F
did not influence the hydrolytic activity of DPP-IV (data
not shown).

DISCUSSION

Since the discovery of the multifunctional dipeptidyl
peptidase-1V, several other proteases possessing similar
enzymatic activity or sequence homology have been de-
scribed and classified as “Dipeptidyl peptidase-IV activity
and/or structure homologues” (DASH) (ref.?*). Of these,
DPP-IV and its closest paralogue FAP are dominantly
plasma membrane localized and were implicated in can-
cerogenesis, most probably by interacting with local regu-
latory as well as structural molecules present in the cancer
microenvironment?®>,

The presence of heterogeneous molecular forms of
DPP-IV observed in various biological sources, includ-
ing transformed astrocytic cells*?, led us to presume the
existence of specific isoforms of both enzymes in glio-
blastoma.

In the current study, we observed a significantly higher
expression of DPP-IV and FAP proteins in high-grade glio-
mas compared to the grade II astrocytoma and the normal
brain tissue, which confirmed our previous results'. There
was a wide intertumoral variability in the expression of
both molecules, possibly reflecting their differential ex-
pression in individual molecular subtypes of glioblastoma
(ref.'? and our unpublished data) and our unpublished
data. FAP immunopositivity was detectable by WB in
most of the high-grade glioma samples, but was absent
in the DPP-IV negative gliomas. This is consistent with
ours as well as other authors’ reports suggesting the co-
expression and possible coregulation of DPP-IV and FAP
in glioma cells and tissues!*, human pancreatic alpha
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cells*” and in some cancer cell lines*. The coexpression of
DPP-IV and FAP was also described in endothelial cells,
where both molecules are part of proteolytically active
heteromeric aggregates with a molecular weight of 820
kDa, promoting cell migration and invasion™.

We further demonstrate the presence of several enzy-
matically active forms of canonical DPP-IV in most of the
high-grade gliomas. Using non-denaturing SDS PAGE,
we show that the migration pattern of DPP-IV present in
glioblastomas corresponds well with the one observed in
glioblastoma cell lines. Interestingly, the pattern consist-
ing of three molecular forms of the enzyme activity was
restricted to the samples which in parallel exhibited more
than one band of DPP-IV immunopositivity. This may be
explained by the fact that the samples without detectable
activity in the enzyme overlay assay had lower quantity of
DPP-1V (measured by ELISA) and thus their enzymatic
activity may be below the detection limit of the method.
Howeyver, since we could not assess the specific enzymatic
activity of individual DPP-IV isoforms, we cannot definite-
ly exclude the existence of hydrolytically inactive isoform
of DPP-IV in glioblastomas.

Isoelectric focusing revealed several isoforms of DPP-
IV in glioblastomas and glioma cell lines, typically having
an acidic pl in similar ranges as described for DPP-IV in
human lymphocytes®. Interestingly, alkalic isoforms were
detected in several tissue samples but were not observed in
any of the analyzed glioma cell lines. Thus, it is possible to
presume that these alkalic isoforms might originate from
other cellular source of DPP-IV within the glioblastoma
tissue. Indeed, we previously described the expression of
DPP-IV enzymatic activity in the microvasculature and
mononuclear-like cells in glioblastomas®®. Alternatively,
transformed glial cells could express different isoforms of
DPP-IV when being in direct contact with other elements
of the tumor microenvironment.

Immunodetection of FAP after native electrophoresis
demonstrated only a single form, while the 2D electropho-
retic separation revealed several isoforms of FAP in glio-
ma tissue as well as in glioma cell lines. Previous studies
reported a pl of 5 for FAP isolated from the human mela-
noma cell line LOX", which corresponds with our results
in glioma cells. Nevertheless to the best of our knowledge,
the substantial molecular heterogeneity of FAP isoforms
has not been observed so far. Interestingly, the isoforms
detected in glioblastoma tissues exhibited more alkaline
pl compared to the glioma cell lines. Similarly to DPP-
IV, these isoforms may originate from the stromal cells
expressing FAP in glioblastomas!? or reflect the differ-
ences in FAP isoforms expressed by glioma cells in vitro
and in situ.

Our previous results and literature data show that the
majority of DPP-IV and FAP is present in the membrane
fraction, possibly in the form of high molecular weight
oligomeric complexes’®’!. However, in addition to the
plasma membrane, both DPP-IV and FAP are also local-
ized in various intracellular compartments®>**. The expres-
sion pattern of individual MW isoforms of the enzymes
was not substantially different between plasma membrane
and endoplasmic reticulum, although acidic pl isoforms
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of DPP-IV were more prevalent in the endoplasmatic re-
ticulum than in the plasma membrane fraction.

The molecular mechanisms responsible for the het-
erogeneity of DPP-IV and FAP remain to be identified.
Removal of N-linked polysaccharides from both DPP-IV
and FAP using PNGase did not influence the propor-
tion of their isoforms, but only slightly shifted the whole
pattern toward to the lower molecular weights. Similarly,
literature data show that deglycosylation has no effect
on the molecular heterogeneity of DPP-IV isolated from
human leukocytes or placenta?***. The DPP-IV hydrolytic
activity measured in the samples treated with PNGase F
remained comparable to the control samples (data not
shown), supporting the conclusion of Aertgeerts et al that
deglycosylation of DPP-IV does not to affect itsr hydrolyt-
ic activity>°. Overall these data suggest that differential
glycosylation does not play a major role in generating the
variability of DPP-IV and FAP.

CONCLUSION

Using enzymatic and immunochemical methods, we
describe for the first time that DPP-IV and FAP are pres-
ent in various isoforms in high grade gliomas with a vary-
ing pattern in individual tumors. Part of this variability
corresponds with the patterns observed in glioma cell
lines; nevertheless the absence of alkalic isoforms of both
enzymes in the glioma cell lines suggests possible contri-
bution of the stromal cells to the pattern observed in glio-
blastoma tissues. The microheterogeneity of both enzymes
is most probably not due to differential glycosylation.
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