Novel missense variant of CACNA1A gene in a Slovak family with episodic ataxia type 2

Andrea Petrovicova, Miroslav Brozman, Egon Kurca, Tibor Gobo, Jana Dluha, Klaudia Kalmarova, Vladimir Nosal, Martina Hikkelova, Adriana Krajciová, Tatiana Burjanivová, Stefan Sivak

Introduction. Episodic ataxias (EAs) are rare dominantly inherited neurological disorders characterized by recurrent episodes of ataxia lasting minutes to hours. The most common subtype is EA type 2 (EA2) caused by pathogenic variants of calcium voltage-gated channel subunit alpha1 A gene (CACNA1A) on chromosome 19p13.

Subjects and Methods. We examined a Slovak three-generation family. Genomic DNA of the family members was extracted from peripheral blood and amplified by polymerase chain reaction. CACNA1A variants were screened by Sanger sequencing.

Results. We identified four family members with recurrent episodes of ataxia. Complex differential diagnosis was performed. Genetic analysis with direct sequencing revealed a novel heterozygous variant of CACNA1A - c.5264A>G (p.Glu1755Gly) located in the pore loop of domain IV of calcium channel alpha-1A subunit.

Conclusion. We identified a novel missense variant of a voltage-dependent P/Q-type calcium channel alpha-1A subunit in a Slovak three-generation family with recurrent episodes of ataxia. The heterozygous missense variant resulted in changing a highly conserved glutamic acid within the pore loop of domain IV.

Key words: episodic ataxia type 2, novel variant, CACNA1A, pore loop

Received: July 1, 2016; Accepted with revision: December 20, 2016; Available online: January 13, 2017

https://doi.org/10.5507/bp.2016.066

INTRODUCTION

Episodic ataxias (EAs) are rare dominantly inherited neurological disorders characterized by recurrent episodes of imbalance and a lack of coordination lasting minutes to hours and eventually, in later stages of the disease, by neurological signs or progressive cerebellar dysfunction between the episodes. So far 8 subtypes of EAs have been described. The most common subtype is EA type 2 (EA2) caused by pathogenic variants of calcium voltage-gated channel subunit alpha1 A gene (CACNA1A) on chromosome 19p13 (ref.2). We describe a three-generation family with four members affected by EA2 with a novel missense variant of CACNA1A.

SUBJECTS AND METHODS

A Slovak three-generation family were examined at the Department of Neurology, Faculty Hospital in Nitra, Slovakia between the years 2014 and 2016. Due to the typical history of recurrent episodes of ataxia, clinical findings, and exclusion of other differential diagnoses, we suspected EA2 in four family members (Fig.1). Clinical neurological examinations and genetic blood tests were performed in the patients and other healthy family members after obtaining their written informed consent. The Ethics committee of Jessenius Faculty of Medicine at Comenius University (Slovakia) approved the study. Written informed consent was obtained from the family members.

DNA was extracted from peripheral blood using standard procedures, all according to the manufac-
turer’s protocol. To isolate DNA, NucleoSpin® Blood kit (Macherey-Nagel GmbH & Co. KG, Germany) was used. PCR was performed in 10 μL volume using 40 ng of template DNA, 2X Maxima Hot Start PCR Master Mix (Thermo Fisher Scientific Inc., USA) and 10 pM of each primer. All primer sequences are available on request. PCR cycling conditions were as follows: initial denaturation 95 °C 5 min; 35 cycles of 95 °C 30 s; hybridization 57-66 °C 30 s; polymerization 72 °C 30 s; and final polymerization 72 °C 10 min with cooling to 4 °C. Amplified products were treated with Exo I (Exonuclease I; Thermo Fisher Scientific Inc., USA) and FastAP (Thermosensitive Alkaline Phosphatase; Thermo Fisher Scientific Inc., USA). The sequencing reaction was carried out using BigDye® Terminator v3.1 kit on the ABI PRISM 3130 Genetic Analyzer (Applied Biosystems, USA). For analyses Geneious 8.1 software was used. PolyPhen-2 and MutationTaster were used to evaluate the effect of mutation on protein function.

RESULTS

A 21-year-old man (III-1) reported recurrent attacks of severe gait instability with vertigo, nausea, vomiting, sensation of heat in the body, and dysarthria provoked by stress. The duration of the ataxic episodes usually ranged from 5 to 24 h. Relapses began at the age of 3 occurring 3 times a week. A neurological examination showed persistent symmetric gaze-evoked horizontal nystagmus and mild mental retardation (IQ = 75). The patient reported no progressive neurological symptoms. He suffered from migraine with visual aura occurring 5 times a month. Brain MRI revealed a mild frontal atrophy. Prescription of acetazolamide led to suppression of the ataxic episodes. The fourth affected family member was a grandmother (I-2). Unfortunately, she unexpectedly died when she was 70 years old, before we could examine her. She suffered from recurrent relapses of vertigo, gait and postural instability, and dysarthria. We do not have reliable information about the duration or frequency of ataxia episodes. She was never examined for EA2 or treated with acetazolamide.

DISCUSSION

EA2, the most common subtype of EAs, is caused by pathogenic CACNA1A variants. CACNA1A encodes the pore-forming and voltage-sensing alpha-1A subunit of the voltage-dependent P/Q-type calcium channel (Ca2,1). It is expressed throughout the central nervous system, particularly in cerebellar Purkinje and granule cells, as well as at neuromuscular junctions. CACNA1A variants are associated with several dominantly inherited disorders with episodic or progressive neurological symptoms, such as EA2 (MIM#108500), familial hemiplegic migraine type 1 (FHM1, MIM#141500) (ref.), spinocerebellar ataxia type 6 (SCA6, MIM#183086) (ref.), epilepsy, and myasthenic syndrome. Alpha-1A subunit is a protein which consists of about 2500 amino acids. Amino-acid sequence is organized in four domains (I-IV), each containing six transmembrane segments (S1-S6) and a membrane-associated loop between S5 and S6 segments. S4 segments serve as voltage sensors that activate and initiate a conformational change that opens the channel pore. S5 and S6 segments and the membrane-associated pore loop between them form the lining of the voltage-gated calcium channel. Selectivity and permeability are achieved by interaction of calcium ions with high-affinity binding sites in these pore loops.

We describe a family affected by EA2 with a novel point variant of the CACNA1A found in four members of a three-generation family. So far more than 60 variants of CACNA1A (nonsense, missense, as well as CAG-triplet expansions) have been identified and associated with EA2 (ref.). Several missense variants in pore-loop regions have been described in the medical literature so far. Structural changes in pore-loop regions can lead to...
Table 1. Clinical comparison of the two CACNA1A variants p.Glu1755Gly and p.Glu1755Lys.

<table>
<thead>
<tr>
<th>Variant p.</th>
<th>age of onset (years)</th>
<th>Episodic ataxia</th>
<th>Intercitial signs</th>
<th>Migraine</th>
<th>Aura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Affected members (n)</td>
<td>Symptom duration (hours)</td>
<td>Progression to acetazolamide (Yes/No)</td>
<td>Cognitive impairment (Yes/No/Unk)</td>
<td></td>
</tr>
<tr>
<td>Glu1755Gly</td>
<td>4</td>
<td>5-48</td>
<td>1/3</td>
<td>1/3</td>
<td>3/0/1</td>
</tr>
<tr>
<td>Glu1755Lys</td>
<td>30-40</td>
<td>0.5-4</td>
<td>1/3</td>
<td>1/3</td>
<td>0/0/4</td>
</tr>
</tbody>
</table>

Unk - unknown, n - number, Glu - glutamic acid, Gly - glycine, Lys - lysine

...continues

functional changes disabling activation or inactivation of calcium flux\(^6\). Our heterozygous missense p.Glu1755Gly variant resulted in negatively charged glutamic acid being substituted with hydrophobic uncharged glycine within the pore loop of domain IV. Glutamic acid at codon 1755 is a highly conserved amino acid from drosophila to man. Denier et al. described a family with a different missense variant at the same position (at position 1755): glutamic acid (Glu) was substituted for lysine (Lys) (ref.\(^{21}\)). Comparison of both phenotypes is in the Table 1. Both families (Denier’s and ours) suffered from episodes of ataxia in combination with dysarthria, vertigo, nausea/vomitus, and sensations of heat. Only some members of both families suffered from progressive ataxia and interictal oculomotor dysfunction. Progressive neurological dysability in our affected family member was more severe compared to Denier’s family (moderate spastic-ataxic gait vs. mild ataxia). Our patients suffer from migraine with visual aura. The variant in Denier’s family led to later onset of symptoms and shorter duration of ataxic episodes compared to our family (30-40 vs. 3-17 years and 0.5-4 vs. 5-48 h, respectively). Acetazolamide, which presumably inactivate by decreasing pH, was effective in both variants\(^{16,25}\).

A small number of subjects and no functional study are the main limitations of our study. However, the functional relevance of the new variant is strongly supported by its presence only in the clinically affected members of the family; by its damaging impact predicted by two different prediction tools; by its position in a specific highly conserved protein region; and especially by its position in a place where another pathogenic variant has already been described (p.Glu1755Lys).

In conclusion, we identified a novel missense variant of alpha-1A subunit of the voltage-dependent P/Q-type calcium channel in a Slovak three-generation family with recurrent episodes of ataxia. The heterozygous missense variant p.Glu1755Gly resulted in changing a highly conserved glutamic acid within the pore loop of domain IV.

ABBREVIATIONS

CACNA1A. Calcium voltage-gated channel subunit alpha1 A gene; EA. Episodic ataxia; EA2. Episodic ataxia type 2; FHM1, Familial hemiplegic migraine type 1; Glu. Glutamic acid; Gly. Glycine; Lys. Lysine; PCR, Polymerase chain reaction; SCA6, Spinocerebellar ataxia type 6.

Acknowledgement: The authors are extremely grateful to the patients and their family for their collaboration. The authors wish to thank Ms. Hana Jesenska who assisted in proofreading of the manuscript. This work was supported with the project „PACS system in Research and Development”, ITMS code: 26210120004, co-financed from EU sources (ERDF) and with the Centre for Translational Medicine, ITMS code: 2622022022, co-financed from EU sources.

Author contributions: SS, BT: literature search; SS, PA, KE, BT: manuscript writing; PA, BM, GT: family examination, SS, DJ, KK, NV, BT: analysis and interpretation of data; HM, KA: genetic testing and analysis.

Conflict of interest statement: The authors state that there are no conflicts of interest regarding the publication of this article.

REFERENCES

are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996;87(5):543-52.