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The role of adhesion molecules in acute myeloid leukemia 
and (hemato)oncology: A systematic review

Tomas Kupsaa,b, Jan M. Horaceka,b, Ladislav Jebavya,b

Background. The treatment of malignancies like acute myeloid leukemia (AML) is often complicated by the hetero-
geneity of the disease and the mechanisms of the disease progression. This heterogeneity is often not reflected in 
standard treatment approaches which provide predictable outcomes in the majority of patients but fail in individual 
cases even with high-dose multi-agent chemotherapy regimens and allogeneic stem cell transplantation. Further, the 
unselective effect of chemotherapy causes high treatment-related toxicity and accelerates the risk of infection during 
prolonged pancytopenia, preventing further dose escalation. Despite rapid progress in therapeutic strategies, the 
fatality of high-grade malignancies remains enormous.
Objectives. Adhesive interactions trigger signal transduction pathway activation and this prevents the apoptosis of 
both normal and malignant cells. A correlation between expression of defined adhesion molecules and patient outcome 
has been found for several malignant diseases including AML. We aim to describe how disruption of these signalling 
pathways can overcome the high resistance to treatment and increase the selectivity of targeting malignant cells. This 
could effectively reduce the overall treatment-related toxicity and improve the general outcome.  
Conclusions. Adhesion molecules facilitate growth of malignant diseases. This review provides a deeper insight into 
these processes. Modulation of adhesion molecules-mediated interactions is an innovative and feasible approach in 
treatment of AML and many other malignancies. Due to expected low toxicity it is an acceptable addition to standard 
chemotherapeutical regimens for all age groups of patients. This approach could improve the overall treatment out-
come in the future. 
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INTRODUCTION

Acute myeloid leukemia (AML) is an aggressive dis-
order characterized by accumulation of immature malig-
nant cells in the bone marrow. Standard chemotherapy 
regimens provide predictable outcomes in the majority 
of patients but the relapse rate is enormous. Even high-
dose multiagent chemotherapy and allogeneic stem cell 
transplantation often fail to prevent relapses and most 
adult patients die from the disease due to high resistance 
to treatment. 

Adhesion molecules (AM) are crucial components 
of cell-cell, the same as cell-matrix interactions. In this 
review, we highlight AM mediated interactions important 
for AML cell survival and disease progression. On bind-
ing to their adhesive counterparts, AM moderate attach-
ment of immune cells to vessel walls under blood flow and 
enable tissue infiltration in a nonspecific inflammatory 
response. Specific modulations of adhesive molecules en-
able more selective cellular trafficking into sophisticated 
structures of skin, lymphnodes and bone marrow. AM are 
classified into four major families: cadherins, selectins, 
integrins, and imunoglobulin family AM (ref.1). To cover 
the whole spectrum of adhesive interactions relevant in 

hematooncology, we also provide the most important data 
on the roles of chemokine receptor CXCR4 and CD44 
molecules in cellular adhesion. 

As we accumulated interesting data, we found that ad-
hesive interactions are also critical for disease progression 
in solid tumors. Further, we found that, like cytokines, 
adhesive interactions trigger activation of several signal 
transduction pathways. The influence of inflammation 
and altered cytokine signalling on oncogenesis, leading 
to tumor progression, have been documented2,3. In fact, 
adhesive interactions with platelets and endothelial cells 
help malignant cells to acquire protection from both apop-
tosis and destruction by the immune system. We identi-
fied malignant disease-mediated positive feedback loops 
causing adhesion molecule inflammatory overexpression 
on endothelial cells. Here we describe these mechanisms 
and clarify the ability of malignant cells to sustain toxic 
concentrations of several broadly used chemotherapeutic 
agents. We also focus on adhesion molecule-dependent 
mechanisms that modulate selective trafficking of defined 
cells into various compartments in macroorganisms on 
the understanding that these processes may be the pivot of 
innovative treatment approaches. Above all, what we con-
sider to be the most important, is the fact that a limited 
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count of adhesion molecules and their clinically relevant 
modifications, act with the same patterns in several and 
very probably the vast majority of malignant diseases. We 
anticipate that therapeutic approaches combining specific 
modulation of defined adhesive interactions with standard 
treatment could be successful in a broad spectrum of solid 
tumors and hematologic malignancies. This reasoning led 
us to include relevant data on adhesive interactions in 
solid tumors in this review which was originally aimed at 
covering their role in AML and hematooncology. 

We have previously reviewed the role of cytokines in 
AML. Cytokines are soluble molecules carrying specific 
information for target cells with the capacity to modulate 
expression of adhesion molecules on endothelial cells in 
an inflammatory response. Cytokines may be produced 
by AML blasts. There is evidence that AML activity in-
fluences serum levels of cytokines, growth factors and 
soluble adhesion molecules. Experimentally, leukemic cy-
tokines enhanced endothelial cell growth in a co-culture of 
AML and endothelial cells4-6. Together with AML induced 
endothelial overexpression of AM, these mechanisms 
may underlie leukemogenesis. We demonstrate that cy-
tokines and adhesion molecules form a unique interacting 
functional network that, when deregulated, supports the 
growth and survival of malignant cells. We shed light on 
how disruption of these mechanisms may restore tumor 
sensitivity to therapy.

CADHERINS

Cadherins are glycoprotein macromolecules that 
participate in very compact intercellular junctions (tight 
junctions) providing sophisticated isolation of different 
compartments in macroorganisms. Cadherine AM are 
bound to the cytoskeleton. Vascular endothelial cad-
herin (VE-cadherin) is a subtype expressed in endothe-
lia. VE-cadherin is essential for the maintenance of the 
endothelial barrier and prevents leukocyte infiltration of 
the tissue. Antibodies against VE-cadherin dissociate the 
contacts of endothelial cells in culture. Administration of 
monoclonal antibodies (mAb) against VE-cadherin accel-
erates neutrophil migration into the inflamed peritoneum 

in rhodents. The anti-VE-cadherin mAb mediated increase 
in vascular permeability is concentration and time depen-
dent7-9. Further, upon Vascular Endothelial Growth Factor 
(VEGF) binding to endothelial receptors, the intracellular 
domain of VE-caderin is phosphorylated and the interac-
tion with cytoskeleton is modulated. These steps further 
increase endothelial permeability. This mechanism seems 
to be important in AML biology. VEGF secretion by 
AML cells was confirmed in adults as for pediatric AML 
patients10-12. In a pediatric model, significant increase in 
VEGF secretion for M4/M5 AML according to the FAB 
classification was found. Both VEGF levels and age at 
diagnosis had independent significant effect on relapse 
free survival. VEGF activates downstream kinase path-
ways. VEGF receptors 1 and 2 are expressed on subsets 
of acute myeloid and acute lymphoid leukemia. Activation 
of VEGF receptor-1 (VEGFR-1) on acute myeloid leuke-

mia cells was shown to involve p38 and Erk1/2 activa-
tion13. In vitro it has been demonstrated that VEGFR-1 
expression in AML is linked to cholesterol accumulation 
in membrane domains and that cholesterol-rich domains 
regulate VEGFR-1 signalling on subsets of AML in vitro. 
Primary leukemia cells were also found to accumulate 
significantly more cholesterol than do normal cells and 
that this accumulation correlates with disease aggres-
siveness14. Coinciding expression of VEGFR-2 on AML 
cells may multiply the effects of this autocrine loop. The 
neutralizing mAb, specific to human VEGFR-2 inhibited 
leukemic cell survival and VEGF-induced proliferation 
and migration in vitro15. From the foregoing, we conclude 
that AML is capable of influencing vascular permeability 
by modulating AM functions and the same mechanism 
also provides AML clone expansion. These findings may 
clarify the effect of anti-VEGF therapy on leukemia regres-
sion in experimental AML models16,17.

SELECTINS AND SIALYL LEWISX

Selectins are glycoprotein macromolecules with short 
C-terminal intracellular domain. At the N-terminus of se-
lectin molecules, a domain similar to C-type lectin is the 
site of adhesive interactions. Underneath this domain, 
the EGF-like chain (Epidermal Growth Factor-like) and 
a variable number of SCR (Short Consensus Repeat) do-
mains are located. According to the SCR-domain count, 
P-, E- and L- selectin are distinguished1. Soluble forms 
of selectin AM probably arise from proteolytic clevage 
of surface-expressed molecules18. In lymphoma-bearing 
mice, the lymphoma cells are the major source of soluble 
L-selectins19. Selectins bind to a surface tetrasaccharide 
structure called “Sialyl LewisX“ epitope (sLeX) and se-
quentially cooperate to support leukocyte tethering and 
rolling along inflamed vascular walls by mediating interac-
tions with counter-receptors expressed by endothelium, 
adherent platelets, or leukocytes20,21. SLeX epitope may 
be integrated as a part of molecules CD15, CD24, CD43 
and CD162. The full details of the synthesis of (sLeX/
CD15s) from core molecules (sialylation) were described 
by Gege et al.22. These structures are broadly expressed 
in human tissues and sLeX is constitutively expressed on 
granulocytes and monocytes and mediates inflammatory 
extravasation of these cells23,24. Resting T and B lympho-
cytes lack its expression but are strongly induced to ex-
press sLeX upon activation25. Among T lymphocytes, the 
sLeX determinant is known to be preferentially expressed 
on activated Th1 cells but not on Th2 cells26. 

Defective synthesis of the sLeX is caused by the loss 
of fucosyltransferase (FucT) activity27. Impaired glyco-
sylation of core proteins results in leukocyte adhesion 
deficiency type 2 (ref.23,28). Furthermore, specific peracet-
ylated disaccharide precursor reduced sLeX expression 
on tumor cells and diminished binding to selectin-coated 
surface29. 

Sialylation has profound implications for immunoreac-
tivity and biologic functions. Although bearing a common 
trisaccharide core, antibodies to sLeX do not recognize 
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LeX and vice versa. Identification of sLeX with mono-
clonal antibodies such as HECA-452 has been useful in 
defining subsets of cells that bind both E- and P-selectin 
(not only P-selectin as do unsialylated molecules) and 
display specialized tissue migration patterns, such as der-
matotropic lymphocytes30-32 and osteotropic stem cells33,34. 
The sLeX determinant is associated with the most primi-
tive subset of the resident bone marrow cells in humans. 
Myeloid cell maturation is accompanied by relative loss 
of sLeX/CD15s and gain of LeX/CD15 expression. During 
myeloid differentiation, both sLeX/CD15s synthesis and 
sialidase activity are increased; however, the increase in 
sialidase activity dominates so that the overall expres-
sion pattern is an increase in LeX and a decrease in sLeX 
expression35. Changes in the sialylation pattern also oc-
cur on the CD43 molecule, a sialomucin expressed on 
dermatotropic T-lymphocytes. Bearing of the CLA epi-
tope (CLA, cutaneous lymphocyte-associated antigen) 
is associated with the acquisition of both P-selectin and 
E-selectin ligand functions36. 

New insights on adhesive interactions and the prog-
nostic relevance of tumor CD24 expression have been 
recently documented for various nonhematological ma-
lignancies37-43. Knowledge of sLeX mediated adhesive in-
teractions with endothelial cells and platelets is important 
for understanding the pathophysiology of tumor metas-
tasis44-48. Both CD24 and CD44 molecules that serve as 
selectin ligands are strongly expressed in solid tumors. 
In postresection patients, an inverse correlation between 
survival and sLeX expression in tumor cells was found48-51. 
P-selectin deficient mice showed slower growth of subcu-
taneously implanted human colon carcinoma cells and 
generated fewer lung metastases after intravenous admin-
istration. In vitro experiments demonstrated that normal 
mouse platelets but not P-selectin-deficient platelets, 
bound to control tumor cells and protected them from 
leukocyte-mediated cytolysis46. 

E-selectin
E-selectin (CD62E) is expressed by endothelia. 

Binding to sLeX plays an important role in AML growth 
and tumor progression. The E-selecin ligand CD65 was 
found critical for AML blast transmigration and extravas-
cular spreading52. The E-selectin expression is regulated 
on the transcription level and is induced by TNFα, IL-1 
and Oncostatin M (ref.1). In response to G-CSF, endo-
thelia increase expression of E-selectin, VCAM-1 and 
ICAM-1 and promote augmented leukocyte adhesion in 
a p38 MAPK dependent manner53. Both E- and P-selectin 
are permanently expressed in bone marrow (BM) endo-
thelia and together with VCAM-1 mediate rolling of he-
matopoietic stem and progenitor cells (HPCs) on BM 
endothelium. 

Among human hematopoietic progenitors, two well-
described glycoprotein E-selectin ligands are known to 
be expressed: HECA-452 reactive PSGL-1 (CLA) and 
HECA-452 reactive glycoform of CD44 termed HCELL. 
In contrast to PSGL-1 that displays CLA on O-glycans, 
the CLA determinants and the E-/L-selectin binding sites 
of HCELL are on N-glycans. The CLA epitope located on 

PSGL-1 is expressed in the majority of skin homing lym-
phocytes. Only CLA+ PSGL-1 functions as an E-selectin 
ligand whereas both CLA+ and CLA- glycoforms of 
PSGL-1 can bind P-selectin30,32,33. Both E- and P-selectin 
are constitutively expressed on dermal microvasculature. 
Hence it is CLA modification of PSGL-1 that promotes 
homing of memory T-lymphocytes to skin. CLA is upregu-
lated in malignant T cells in patients with cutaneous T cell 
lymphoma and this directly correlates with the unique 
pattern of skin involvement, providing the opportunity to 
target these sLeX moieties and attenuate the dermal dis-
semination of malignant T cells. Subsequent experiments 
modulated P- and E-selectin ligand activities by fluoro-
sugar analogues and the influence on E- and P-selectin 
recognition by malignant human T cells was studied54,55. 

E-selectin also mediates critical steps in cellular 
homing and engraftment into the BM. Both CLA and 
HCELL are involved in these processes. HCELL is a 
glycoform of an integral membrane glycoprotein, CD44, 
that also expresses the CLA epitope (recognized by mAb 
HECA452). HCELL expression is characteristic of the 
most primitive hematopoietic cells, especially the earli-
est subset of HSC lacking CD38 expression56,57. All hu-
man cells that express HCELL, including hematopoietic 
progenitor cells (HPCs), de novo AML cells, the AML-
derived cell line KG1a and G-CSF-mobilized peripheral 
blood leukocytes, display higher binding to E-selectin 
than cells lacking HCELL. Selectin-independent rolling 
in BM sinusoid is mediated by alpha4beta1 integrin (see 
below). All three mechanism involving VLA-4, PSGL-1 
and HCELL were necessary to gain full homing activity 
in lethally irradiated mice58-60. 

In case the bone marrow trafficking is not included 
into the model, the P- and E-selectin mediated adhesion 
resulted in growth inhibition of HPCs and a subpopu-
lation of more differentiated cells underwent apoptosis 
following adhesion to E-selectin. These processes were 
found to be PSGL-1 independent61, probably employing 
HCELL molecule (author’s comment). Recent data show 
these mechanisms may support AML expansion. AML 
cells were found to trigger positive feedback loops and ac-
tivate endothelial cells. Activated endothelia overexpress 
E-selectin so that AML cells may adhere to activated 
endothelia. The adherent AML cells are in a quiescent 
state, escape chemotherapy and later detach and become 
proliferative again. Anti E-selectin treatment completely 
abrogated this protection. This mechanism suggests how 
E-selectin protects AML cells from chemotherapy62. The 
selectin-dependent protection of malignant cells is not 
resticted to hematologic malignancies. Like sLeX medi-
ated adhesion of neutrophils, pancreatic cancer cells also 
adhere to endothelial E-selectin, which is increased after 
TNFα stimulation63. In conclusion, surgical trauma may 
promote the hematogenic spreading of pancreatic can-
cer cells via TNFα induced E-selectin expression. On the 
other hand, the upregulation of E-selectin expression is de-
pendent on the p38 MAPK signaling pathway and may be 
inhibited pharmacologically64. At the experimental level, 
FucT-I transduction into malignant cells decreased sLeX 
expression and dramatically modified interactions with 
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E-selectin and this may form the basis for antimetastatic 
gene therapy65. Overall, it is clear that some populations 
of cells may be rescued from apoptosis following adhesion 
to E-selectin. Further studies of TNFα overproduction 
and selectin AM expression in patients with malignan-
cies may provide substantial progress in understanding 
the complex mechanisms of tumor biology. As a possible 
novel treatment approach of broad therapeutic applica-
tion, the mechanisms involved in these processes should 
be further investigated.

L-selectin
L-selectin (CD 62L) is “leukocyte“ selectin, a glyco-

protein constitutively expressed on granulocytes, mono-
cytes and lymphocytes. L-selectin is involved in targeted 
migration (homing) of lymphocytes to lymph nodes and 
sites of chronic inflammation. L-selectin is a PSGL-1 li-
gand but it also binds α4β7 integrin Mucosal Addressin 
Cell Adhesion Molecule-1 (MAdCAM-1). L-selectin me-
diates leukocyte homing to lymphnodes and HPC homing 
to bone marrow1,66-68. The leukocyte homing is based on 
the selective attachment of lymphocytes to high endothe-
lial venules (HEV) of peripheral lymph nodes. A sulfo-
transferase that is highly restricted to HEV is essential 
for L-selectin ligand activity69. L-selectin also binds the 
sLeX motif attached to the endothelial CD34 molecule70. 
Alternatively, in sites of chronic inflammation β1 integrin 
mediated pathway also participates in leukocyte recruit-
ment71. 

L-selectin deficit results in the complete loss of 
lymphocyte ability to bind HEV and populate periph-
eral lymph nodes (PLNs). Memory T cells that lack 
L-selectin or CC-chemokine receptor 7 cannot enter 
PLNs (ref.72). In a murine model of T-cell lymphoma, the 
lack of L-selectin expression delayed the dissemination 
to peripheral tissues. This resistance of selectin-deficient 
mice to lymphoma progression was restricted to variants 
with lower malignancy. Highly tumorigenic variants were 
insensitive to the absence of L-selectin. In general, the 
role of L-selectin in the spread of T-cell lymphomas is 
probably less important compared to ICAM-1/LFA-1 in-
teraction73. Interestingly, L-selectin mediated signalling 
enhanced CXCR4 surface expression in lymphocytes. 
L-selectin-induced CXCR4 emanates from intracellular 
stores because most of the CXCR4 in freshly prepared 
lymphocytes is inside the cell and it is induced to mobilize 
to the surface within minutes74.

The prognostic significance of L-selectin and soluble 
(s)L-selectin in AML has also been studied. AML blasts 
were found to express L-selectin but the expression is 
variable. In a study of 36 AML patients at diagnosis, a 
correlation of low L-selectin expression and adverse cyto-
genetics was found75. The low L-selectin expressors had a 
lower probability to achieve complete remission and had 
shorter relapse-free survival. In a different study on 50 
AML patients, those with higher sE- and sL-selectin lev-
els at diagnosis had higher relapse rate and shorter event 
free survival76. Despite convincing data in both studies, 
the cohorts were rather small and multivariate analysis 

including other adhesion molecules was not performed. 
We conclude that at the moment, we lack sufficient data 
to judge the prognostic role of L- and sL-selectin in AML. 

P-selectin
P-selectin (CD62P) is a 140kD glycoprotein expressed 

by activated platelets and endothelia. P-selectin is stored 
in intracellular vesicles (Weibel-Palade bodies) and is rap-
idly expressed on the surface after activation. P-selectin 
containing storage granules were also found in endothelial 
cells77. Upon thrombin triggered platelet activation, the 
p38 MAPK is phosphorylated and thus activated but the 
mechanism that mobilizes P-selectin from intracellular 
stores is p38 MAPK independent78. P-selectin was found 
to support leukocyte rolling along postcapillary venules 
at the earliest phase of inflammation79. 

The activators of P-selectin transcription are interleu-
kins IL-4 and IL-13 and a Oncostatin M, a pleiotropic 
cytokine belonging to the IL-6 group of cytokines1,80,81. 
The best characterized selectin ligand is P-selectin gly-
coprotein ligand-1 (PSGL-1, CD162) that is expressed 
in the majority of leukocytes. PSGL-1 can bind all three 
selectins with specific requirements for E-selectin binding 
capacity30,82. The role of FucT-IV and -VII in the synthe-
sis of carbohydrate PSGL-1 binding sites has been docu-
mented83. 

INTEGRINS

The Integrin family of adhesion molecules represents 
noncovalently linked surface heterodimers of α and β sub-
units allowing interactions with components of the inter-
cellular (IC) matrix (various types of collagen, laminine 
and fibronectine). Further classification is based on the 
β-subunit type1. Each integrin appears to have a specific, 
nonredundant function84. Integrin mediated adhesions 
participate in signal transduction. For example, upon 
α5β1 interaction with cognate ligands, the FAK (Focal 
Adhesion Kinase), phosphatidylinositol-3 kinase (PI3K) 
and Ca2+/calmodulin-dependent protein kinase pathways 
are activated and boost expression of the Bcl-2 oncogene85. 
Integrin mediated adhesion faciliates PDGF, EGF and 
VEGF receptor stimulation. Cellular responses to soluble 
growth factors are dependent on integrin-mediated cellu-
lar adherence. In fact, many integrin-stimulated pathways 
are very similar to those coupled with growth factor re-
ceptors84. Understanding these mechanisms explains how 
apoptosis is blocked in normal cells by integrin-mediated 
signalling. In malignant cells the antiapoptotic signals are 
provided by disregulation in oncogene/tumor-supression 
gene function but one may speculate that integrin-mediat-
ed signalling further enhances protection from apoptosis. 

Beta-2 (CD18) integrins are preferably expressed on 
leukocytes. The Leukocyte Function associated Antigen-1 
(LFA-1) is α1β2 integrin providing interactions dominantly 
with the Inter Cellular Adhesion Molecule-1 (ICAM-1). 
Recent studies clarified that LFA-1 is not an E-selectin 
ligand in hematopoietic stem and progenitor cells86,87. 
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Leukocyte adhesion deficiency type I arises from muta-
tions in the β2 subunit88. Activated endothelial cells express 
AM involved in leukocyte rolling (P- and E-selectin) leu-
kocyte adhesion (VCAM-1, ICAM-1), same as chemoat-
tractants MCP-1 and IL-8. The molecular mechanism of 
leukocyte transmigration from the vasculature into tissues 
has been described89. Recently, the macrophage migra-
tion inhibitory factor (MIF) and its’ p38 MAPK depen-
dent contribution to endothelial expression of E-selectin, 
ICAM-1, VCAM-1 and production of IL-8 and MCP-1 
was documented90.

Very Late Antigens (VLA) are β1 (CD29) integrins 
with inducible expression upon leukocyte activation. The 
α4β1 integrin (VLA-4) is the major counterpart of Vascular 
Cell Adhesion Molecule-1 (VCAM-1). Further it binds 
fibronectine. VLA-4 facilitates the stem/progenitor cell re-
tention in bone-marrow niches. This is critical for attach-
ment of leukemic blasts to the vessel wall and together 
with CXCR-4/SDF-1 interaction it mediates migration 
of CD34+ cells (also malignant myeloid cells) beneath 
marrow stromal cells91. Integrin-mediated adhesion in the 
bone marrow microenvironment affects signal transduc-
tion, protects AML blasts from chemotherapy-induced 
apoptosis and provides resistence to several chemothera-
peutic agents such as cytarabine, etoposide, daunorubi-
cine or mitoxantrone. Adhesion of U937 AML cells to 
human osteoblasts upregulaed the Wnt pathway antago-
nist and supported resistence to daunorubicin. Several 
potential mechanisms of resistance, including VLA-4 
triggered activation of the phosphatidylinositol-3-kinase 
(PI3K)/Akt/bcl-2 pathway, were studied. Blocking an-
tibody to VLA-4 restored chemotherapy sensitivity to 
cytarabine in a murine AML model92,93. In a B-cell lym-
phoma model, targeting of VLA-4 overcame stromal 
cell mediated protection against rituximab and other 
cytotoxic drugs94. High levels of VLA-4 expression were 
documented on AML blasts but the expression was not 
significantly associated with response to chemotherapy or 
patient outcome. Subsequent analyses including soluble 
(s)VCAM-1 revealed that increased binding of sVCAM-1 
to VLA-4 was significantly associated with longer overall 
survival95. In a study on 216 pediatric AML patients, high 
VLA-4 expression was associated with lower FLT3 inter-
nal tandem duplication prevalence and higher likelihood 
of extramedullary disease. Multivariate analysis showed 
that high VLA-4 expressors had a lower relapse rate and 
better disease-free survival (DFS). Low VLA-4 expression 
was an independent adverse prognostic factor for DFS 
and relapse rate. The role of VLA-4 expression was most 
prominent in patients with standard-risk AML. A similar 
trend was seen in low-risk but not high-risk patients96. 
In contrast, another study on relapsed pediatric patients 
with B-cell precursor acute lymphoblastic leukemia (ALL) 
showed that high VLA-4 expression was associated with 
poor molecular response to therapy. The event-free and 
overall survival were significantly worse in high expres-
sors. In vitro blockade of VLA-4 with specific antibodies 
abolished the protective effect of stromal cells in co-cul-
ture and restored sensitivity to cytarabin also in relapsed 

B-ALL (ref.97). Evaluation of sVCAM-1 levels was not 
included in these studies. We conclude that integrin-medi-
ated adhesion in context with sVCAM-1 binding to VLA-4 
or at least sVCAM-1 levels is worth further investigation. 
VLA-4 targeting in hematologic malignancies seems to be 
a promising therapeutic approach.

IMMUNOGLOBULIN ADHESION 
MOLECULE FAMILY

Immunoglobulin AM are subclassified according to 
their ligand and number of immunoglobulin domains in 
the structure. The presence of heavy glycosylation and 
specific structural motifs of ICAM-1 (CD54) supports 
its interactions with numerous ligands. In general, bind-
ing to ICAM-1 facilitates extravasation of leukocytes 
across vascular endothelia during the inflammatory re-
sponse. All types of ICAM molecules (ICAM 1,2,3,4) 
interact with LFA-1. Blocking of LFA-1 attenuates T-cell 
lymphoma migration through ICAM-1 coated barrier98. 
ICAM-1-deficient mice are resistant to the develop-
ment of lymphoma infiltration of kidneys, spleen and 
liver after intravenous inoculation of LFA-1 expressing 
T-lymphoma cells99. ICAM-1 expression is induced by 
IL-1, TNF-α, IFN-γ. ICAM-2 (CD 102) is non-inducibly 
expressed on leukocytes and endothelia1. With ICAM-1 
described as an adhesion and viral entry molecule100, a 
role in signal transduction was hypothesized and futher 
studied. In lymphocytes, ICAM-1 stimulation leads to 
B-cell receptor signalling with subsequent tyrosine phos-
phorylation and activation of STP with possible cytokine 
release101. In astrocytes, ICAM-1 signalling promotes re-
cruitment of inflammatory immune cells through TNF-α 
secretion102. TNF-α triggers phosphorylation of the p38 
MAPK and further up-regulates expression of ICAM-1 
and other adhesion molecules via the same mechanisms 
as MIF (ref.90,103). In addition, the expression of RANTES 
(Regulated upon Activation Normal T-cell Expressed and 
Secreted) mRNA and protein was also found to be upregu-
lated by ICAM-1 ligation in a p38 MAPK independent 
manner104. These data suggest that ICAM-1 dependent 
binding induces STP activation and de novo synthesis of 
ICAM-1 itself, providing signal amplification. 

VCAM-1 (CD 106) is primarily the VLA-4 ligand but 
it also has affinity to α4β7 integrin and has been shown to 
interact with ezrin and moesin105. The endothelial VCAM-
1 expression is upregulated by increased gene transcrip-
tion after IL-1β, TNF-α or Oncostatin M stimulation or 
through mRNA stabilization by IL-4 and IL-13 (ref.106,107). 
The VLA-4/VCAM-1 interaction enables tight leukocyte 
adhesion to endothelia. Myeloblasts can activate endothe-
lial cells and promote their own adhesion to endothelia 
through cytokine secretion which is remarkable in the 
pathophysiology of life-threatening leukostasis and tissue 
infiltration by myeloblasts108. 
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CXCR4

CXCR4 is a chemokine receptor for stromal derived 
factor-1α (SDF-1α) also known as CXCL-12. Homing of 
cells into BM is a coordinated, multistep process which 
involves SDF-1α signaling, activation of LFA-1, VLA-4 
and VLA-5 and cytoskeleton rearrangement. Both nor-
mal and cancer cells share this mechanism91,109-111. CXCR4 
expression is a documented prognostic marker in AML 
(ref.112-114). Mechanisms including CXCR4/SDF-1α axis 
and VLA-4/VCAM-1 pathway mediate interactions with 
bone marrow stromal cells protect malignant cells from 
chemo- and radiotherapy92,115,116. The role of CXCR4 in 
AML was illustrated by experiments showing reduction 
in engraftment of primary human AML cells into NOD/
SCID mice recipients treated with antibody to CXCR4 
(ref.117). Further, the prognostic significance of FAK ex-
pression was described. FAK is a nonreceptor tyrosine 
kinase with an important role in cell motility and survival. 
Tumor cells overexpressing FAK present with increased 
proliferation, motility and invasiveness118. The adhesion 
phenotype of AML determining CXCR4, FAK and VLA-4 
expression was studied by flow-cytometry in a group of 36 
patients. Overall survival (OS) was negatively influenced 
by overexpression of all of these markers in univariate 
analysis. Combination of these markers revealed two prog-
nostic subgroups. Patients overexpressing 2 or 3 factors 
had shorter OS (ref.119). 

 A peptide inhibitor of the CXCR4 exhibited direct 
cytotoxicity against AML and multiple myeloma cells 
in vitro and in xenografts. Another CXCR4 inhibitor, 
AMD3100, worked synergistically with histone deacety-
lase inhibitor panobinostat to induce apoptosis of AML 
cells in vitro120,121. The AMD 3100 is a SDF-1α analogue 
known as plerixafor that is used in mobilizing normal pro-
genitor cells into peripheral circulation122. Various SDF-
1α antagonists have been investigated. The polypeptide 
RCP168 had strong antagonistic effect on the stromal 
cell-induced chemotaxis of leukemic cells. Furthermore, 
RCP168 inhibited SDF-1α-induced AKT and ERK phos-
phorylation123. Equivalent results were obtained with the 
small-molecule CXCR4 inhibitor AMD3465, a second 
generation CXCR4 inhibitor.

FLT3-ITD is a marker of poor prognosis in AML. We 
draw attention to the fact that the association between 
FLT3-ITD and higher CXCR4 expression has been doc-
umented124. Various tyrosinkinase inhibitors have been 
tested in FLT3-ITD positive AML. Despite some benefit, 
these drugs have not provided significant improvement in 
patient prognosis. The resistance to treatment is high and 
concerns about toxicity prevent further dose escalation. 
AMD 3465 antagonized SDF-1α and stroma-induced 
chemotaxis and suppressed stroma activated PI3K/AKT 
and MEK/ERK pathways which effectively mobilized 
leukemia cells and stem cells into circulation and en-
hanced the sensitivity to chemotherapy or FLT3-inhibitor-
induced cell death125. Based on these data, the inhibition 
of CXCR4/SDF-1α axis is logically a novel therapeutic 
target in AML. The therapeutic efficacy of CXCR4 inhibi-
tion was tested in a phase 1/2 study with 52 with relapsed/

refractory AML patients. Combined chemotherapy with 
CXCR4 inhibitor plerixafor provided convincing rates of 
complete remissions, demonstrating in vivo the profound 
impact of the CXCR4/SDF-1α axis disruption126.

It was hypothesized that cytotoxic chemotherapeutic 
agents induce dynamic changes in surface CXCR4 ex-
pression. Chemotherapy-induced upregulation of CXCR4 
may represent a mechanism of acquired therapeutic re-
sistance. This hypothesis was explored in the AML cell 
line MOLM-14 and clinical specimens of pediatric AML. 
Chemotherapy-induced upregulation of surface CXCR4 
was confirmed and it was shown that cell lines variably 
upregulate CXCR4 with chemotherapy treatment. Those 
that upregulated CXCR4 were protected from chemother-
apy-induced apoptosis when cocultured with bone mar-
row stromal cells. Treatment with AMD3100 decreased 
stromal protection of myeloblasts127. 

There are several other mechanisms for overcoming 
the CXCR4/SDF-1α axis. CXCR4 mediated signaling ac-
tivates PI3K that can be selectively inhibited by isoform-
selective inhibitors128. Another option in targeting CXCR4 
is modulation of posttranslational phosphorylation of the 
intracellular domain at serine339. Phosphorylation of 
CXCR4 Serine 339 in bone marrow biopsies correlated 
with poor prognosis. Experimental Kasumi-1 AML cells 
with mutations in the 339 position had increased CXCR4 
expression but significantly reduced bone marrow hom-
ing. Engraftment of mutant cells into immunodeficient 
recipient was also impaired129. CXCR4 phosphoryla-
tion at serine339 is regulated by serine/threonine kinase 
PIM1. PIM1 serine/threonine kinase activity is essential 
for CXCR4 surface expression and migration towards 
SDF-1α gradient. The FLT3-ITD cells with the inhibitied 
PIM1 failed to reconstitute lethally irradiated recipients. 
Experimentally, PIM1 may be inhibited by small molecule 
inhibitors which is promising for future therapeutic ap-
plications130,131. Thus, influencing posttranslational modu-
lation might be an independent mechanism in CXCR4 
inhibition.

CD44

CD44 is a receptor for extracellular matrix compo-
nents such as hyaluronic acid, but can also interact with 
osteopontin, collagens, and matrix metalloproteinases. 
The standard isoform, designated CD44s, comprising ex-
ons 1–5 and 16–20, is expressed in most mammalian cell 
types. Alternative splicing is the basis for the structural 
and functional diversity of this protein. CD44 molecule 
undergoes numerous posttranslational modifications. 
CD44 glycosylation directly controls its‘ binding capacity 
to fibrin and immobilized fibrinogen132. One critical modi-
fication involves discrete sialofucosylations rendering the 
selectin-binding glycoform of CD44 called HCELL (for 
Hematopoietic cell E-selectin/L-selectin ligand). The 
HCELL was originally discovered in human hematopoi-
etic stem cells and leukemic blasts and was found to direct 
migration of these cells into bone marrow34,133. This mi-
gration occurred despite absence of CXCR4 expression 
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on these cells. Engagement of HCELL with E-selectin 
triggers VLA-4 adhesiveness, resulting in shear-resistant 
adhesion to ligand VCAM-1. This VLA-4 activation and 
subsequent GTPase signaling pathway activation rep-
resent molecular molecular effectors in this process134. 
HCELL thus functions as a "bone homing receptor". 

Administration of antibody to CD44 blocked engraft-
ment of AML cells in NOD-SCID mice and directly elimi-
nated the engrafted leukemic stem cells (LSC). CD44 
has been identified as a key regulator of AML LSC with 
no documented effect on engrafted normal hematopoi-
etic cells derived from cord blood or human bone mar-
row135. Very recently, a humanized monoclonal antibody 
specific for CD44 that targets and directly kills chronic 
lymphocytic leukemia cells, was identified136. The cyto-
toxic effect of anti-CD44 treatment was not mitigated by 
interaction with mesenchymal stromal cells or hyaluronic 
acid. HCELL was also identified in colon carcinoma cells. 
Cancer cells characteristically express CD44, and there 
is increasing evidence that HCELL serves as their major 
selectin ligand. This finding clarifies the ability of solid 
tumors to infiltrate bone marrow that is both HCELL and 
CXCR4 dependent137-139. Variations in CD44 are reported 
as cell surface markers for breast cancer stem cells. In 
breast cancer CD44+/CD24– expression is a marker for 
cancer stem cells (CSCs)-like characteristics140,141. CSC 
are likely to have a central role in both tumorigenesis 
and metastasis. The CD44+/CD24– cells showed increased 
migration and invasivity. Variant 6 isoform of CD44 is a 
cancer stem cell-like marker in prostate cancer, associated 
with proliferation, invasiveness, metastasis and chemo-/
radioresistance. These effects are mediated through PI3K 
activation and the Wnt signalling pathway142. Variant iso-
forms of CD44 are also relevant to the progression of 
head and neck squamous cell carcinoma143. In contrast, 
in epithelial ovarian cancer CD44 upregulation seems to 
be associated with well- differentiated tumor and favorable 
outcome144. 

Glycosyltransferase-programmed stereosubstitution 
(GPS) is a procedure allowing us to modify the surface 
of live cells expressing CD44 and enforce HCELL ex-
pression145. The utility and applicability of GPS for gly-
coengineering of HCELL expression has been reviewed 
recently146. Understanding the mechanisms of HCELL-
mediated organ-specific dissemination of tumor cells may 
help to develop effective prevention of hematogenous 
spread of solid tumors147. Ex vivo glycan engineering of 
HCELL expression may then open the 'avenues' for the ef-
ficient vascular delivery of cells into bone marrow. These 
procedures may form the basis of sophisticated cellular 
therapies in hematology and oncology.

CONCLUSIONS

We attempted to elucidate how adhesion molecule 
dependent factors support malignant cell growth and 
survival. We described the origin of adhesion molecule 
overexpression in malignancies and demonstrated how 
malignant cells hijack these mechanisms and support 

their own growth and survival. Understanding these 
processes provides deeper insight into the contributing 
factors triggering malignant cell proliferation, migration, 
tissue infiltration and resistance to treatment as these are 
the basic questions in clinical and experimental oncology 
with treatment consequences. 

We believe that further investigation of adhesion mol-
ecules will help us define novel therapeutic approaches 
allowing more accurate targeting of the origin of tumor 
progression and leukemogenesis and will provide better 
outcomes and better quality of life for oncological pa-
tients.
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