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The molecular basis for the transition of carcinoma of the prostate from androgen-dependent to androgen-
-independent growth is largely unknown. Currently for example, it is not clear whether the androgen-independent
phenotype is a result of selection of a subgroup of genetically distinct prostate tumour cells which are already
hormone-resistant or a genetic adaptation of prostate tumour cells to the hormone therapy itself. It has also been
established that prostate tumour transformation is a result of homeostatic control defects, a line of thinking
directed toward elucidating the apoptotic profile of prostate tumour cells that may be important in determining
prognosis, response to therapy and illness progression. Main consideration in this part of rewiev is given to the role
of tumour suppressor genes pRb and PTEN and also the natural inhibitors of cyclin dependent kinases – proteins
p21Waf1/Cip1 and p27Kip1. Attention is also given to the role of FAS-mediated pathways in apoptosis induction.

lack the ability to express pRb, do not control the re-
striction point and pass it without stopping. All these
defects can lead to uncontrolled growth1, 3. As far as
proliferation is concerned Hofman et al. demonstrated
that a biphasic dose-dependent response of the prostatic
cancer cell line LNCaP to androgens is closely reflected
in pRb phosphorylation, E2F activity and p27Kip1 pro-
tein expression4.

Mutational changes in the Rb gene found in specific
tumours are linked to aggressive behaviour and poor
clinical prognosis5, 6. Molecular based studies of Rb al-
terations in prostate cancer are limited however and
thus no firm conclusion can be drawn. Single stranded
conformation polymorphism analysis (SSCP) of RNA
showed that 16 % of human primary tumours had alte-
red Rb7, 8. Other research groups evaluated genetic al-
terations in the region of the Rb gene on the basis of
loss of heterozygosity (LOH). In 27–60 % primary pros-
tate cancer cases LOH has been described. LOH in the
Rb gene has also been found in benign prostatic hyper-
plasia (BPH) samples8–10. Debatable is whether inactiva-
tion of the Rb gene is a primary event in the pathogenesis
of prostate cancer or a secondary event connected to
the progression of the illness11. Bookstein et al. studied
pRb protein expression in three different prostate can-
cer cell lines and found that the DU-145 cell line contai-
ned abnormally small protein translated from Rb mRNA
transcript and lacking 105 nucleotides encoded on
exon 21 (ref.12). The finding of short mRNA transcript
in DU-145 cell line was confirmed in two further stu-
dies13, 14. In prostate cancer tissues however no similar

Rb

Retinoblastoma gene (Rb), a member of the tumour
suppressor gene family, is localized on the short arm of
chromosome 13. It codes the cell cycle regulating 110 kDa
protein and it is expressed in the majority of cell types
regardless of their proliferative status. Inactivation of
both copies of the gene gives rise to ocular tumours
(retinoblastomas) in the same way as other neoplasms1.
Retinoblastoma protein (pRb) may be phosphorylated
in various sites and its phosphorylation status changes
during different phases of the cell cycle. Nonphospho-
rylated or hypophosphorylated forms of the protein
block transition through the restriction point of the cell
cycle. In this form, pRb and its related proteins p170
and p130 (“pocket proteins”) bind transcription factors,
mainly members of the E2F (E2F1-3) and DP families.
These transcription factors are implicated in the regula-
tion of the expression of genes necessary for progres-
sion to the S phase and binding by pRb blocks their
activity. During progression through the G1 phase, pRb
is phosphorylated. This facilitates the release and acti-
vation of E2F/DP transcription factors and permits pro-
gression to late G1 phase and completion of the cell
cycle2. Key components of the cell cycle initiating pRb
phosphorylation include D cyclins and associated kinases
cdk4 and cdk6. Complex cyclin E/cdk2 is then responsible
for pRb hyperphosphorylation. Cells with permanently
overphosphorylated pRb, in other words those with
overactive or insufficiently inhibited cdk4 (6)/cyclin D,
and cells which are unable to dephosphorylate pRb or
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alterations have been found to date8. Using immunohis-
tochemical techniques, absence of pRb protein has been
described in 17–78 % of cases. The significance of Rb
alterations in prostate cancer, however, remains prob-
lematic8, 9, 14. There is insufficient correlation between
LOH in Rb and missing pRb expression. In addition,
evaluation of pRb expression may be influenced by
fixation artefacts, variability of immunohistochemical
reaction (sensitivity and specificity of antibody) and
interpretation of staining results. Whether the reduc-
tion of pRb staining has any significance for predicting
the malignancy potential of a given carcinoma lesion is
a question requiring further study in a well characteri-
sed population of prostate cancer patients8.

Rb activity is also connected to apoptosis induction
in different cell environments. Day et al. have docu-
mented the functional role of Rb in signalling apoptosis
in prostate tumour cell studies15, 16. Inactivation of the
Rb apoptotic pathway is important in the case of meta-
static progression of prostate tumours6. Kaltz-Wittmer
et al. carried out a FISH analysis of gene aberration
(myc, CCNDI, erbB-2, Rb and AR) in advanced pros-
tate tumours before and after androgen therapy. Loss
of the Rb gene was almost four times more frequent
after therapy than before therapy. Changes in the number
of gene copies before and after therapy demonstrate the
possibility that these genes are connected to exit from
androgen control17. Despite the fact that the predisposi-
tion of prostatic epithelial cells to cancerogenesis in the
absence of Rb tumour suppressor gene has been shown
in rats, the prognostic evaluation of Rb is not currently
clear18, 19.

PTEN/MMAC1/TEP1

Gene PTEN/MMAC1/TEP1 (PTEN) is localised on
chromosome 10q23.3 and codes dual-specificity phos-
phatase. This has the ability to dephosphorylate both
tyrosine phosphate and serine/threonine phosphate
residues on proteins. The in vivo function of PTEN
appears to be dephosphorylation of phosphatidylinositol
3,4,5-triphosphate20–22. PTEN possesses a PDZ [postsy-
naptic density protein (PDS-95)/Drosophila disc large
tumour suppressor (dlg)/tight junction protein (ZO1)]
motif represented by the amino acids Ile-Thr-Lys-Val.
In addition to the site responsible for dual-phosphatase
activity, the amino-terminal domain of PTEN protein
contains a region which is homologous to cytoskeletal
proteins tensin and auxillin23. PTEN may be also a com-
ponent of the signalling complex associated with focal
adhesion kinase (FAK)24. LOH in the region 10q23.3 is
linked to a number of tumours including carcinomas of
the prostate and mutations of PTEN were, contrary to
other tumours, also found in prostate tumour cell lines,
xenografts and tissue samples from hormone resistant
prostate tumours20, 25–27. LOH in the PTEN locus was
confirmed in 29–42 % tumours of prostate and screen-
ing for homozygous deletions of the gene showed a se-

cond mutational event in 43 % of prostate tumours.
LOH of 10q was found in 20 % tumours localised in the
prostate and in 46 % metastases11, 28. Suzuki et al. found
55 % LOH for PTEN in patients who had died of
hormone-refractory prostate cancer with widespread
metastases29. Wang et al. concluded that from 10 % to
15 % of stage T2 prostate carcinomas had homozygous
deletion of the PTEN gene30. The aim of Rubin et al.
was to find the frequency of LOH at 10q23.3 in the
region of PTEN in men with and without lymph node
positive prostate cancer. The findings of an elevated
number of alterations in node-positive tumours of the
prostate suggest that 10q23.3 is a marker for metastatic
progression27. Mutations and genetic alterations (LOH)
seem to be more frequent in higher stage cancers and
prostatic tumour cell lines than in localised prostate
tumours. In patients with an inherited predisposition to
cancer of the prostate no germ line PTEN mutations
were found31, 32. The majority of deletions involving PTEN
eliminate the PDZ motif and thereby interrupt interac-
tions with other proteins possessing PDZ domains33.
These include Fas (CD95/APO-1) and adenomatous
polyposis coli (APC) tumour suppressor protein con-
taining the C-terminal PDZ motif. The majority of iden-
tified mutations block phosphatase activity or influence
the stability of the enzyme. Hence phosphatase activity
of PTEN is thought to be critical for tumour suppressor
activity34. This suggests that PTEN may be an important
tumour suppressor in a subset of prostate carcinomas.
Inactivation of PTEN by contrast may be an important
secondary genetic event contributing to progression of
prostate cancer and giving prostatic tumour cells a se-
lective advantage11. McMenamin et al. inquired into
PTEN expression in a series of archival paraffin embed-
ded samples of prostate cancer. PTEN expression was
seen in secretory cells while a complete absence of
PTEN expression correlated with Gleason score and
with advanced pathological stage. Loss of PTEN pro-
tein thus correlated with the pathological markers of
poor prognosis in prostate tumours35.

The ability of PTEN to regulate apoptosis is the
subject of active research. Davies et al. tested biological
and biochemical effects of PTEN expression in LNCaP
cell line which is devoid of functional gene products.
Expression of PTEN in these cells was found to be
related to inhibition of Akt/PKB activation, to apoptosis
induction and growth inhibition. Overexpression of Bcl-2
blocked apoptosis induced by PTEN and p53, but not
the growth-suppressive effects of PTEN suggesting that
the growth-regulatory effects of PTEN involve multiple
pathways36. Sharrard et al. investigated the influence of
PTEN expression on prostate tumour cell lines. They
showed that overexpression of PTEN in transfected cell
lines led to shrinkage and rounding of cells but did not
result in increased levels of classical apoptosis37. Huang
et al. using prostate cancer cell lines showed that loss of
PTEN leads to up-regulation of the bcl-2 gene, thus
contributing to survival and chemoresistance of pros-
tate cancer cells38. Studies of the mutual antagonism
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between PTEN and androgen receptor (AR) was the
subject of Li et al’s work. On the one hand, PTEN
repressed the transcriptional activity of AR, on the other
hand, androgens protected prostate cancer cells from
PTEN-induced apoptosis in an AR-dependent manner39.
Loss of PTEN function may induce tumourigenesis
through unopposed activity of AR as well as contribute
to the resistance of prostate cancers to androgen abla-
tion therapy. Also the combined tumour-suppressive
activity of PTEN and p27Kip1 through the control of the
cell cycle progression shows the key significance of these
proteins. Their co-operation in prostate cancer has been
demonstrated in mouse model by Di Cristofano et al.
PTEN activity leads to the induction of p27Kip1 expres-
sion, which in turn can negatively regulate transition
through the cell cycle. Thus, the inactivation of p27Kip1

may be epistatic to PTEN in the cell cycle control40.

p21Waf1/Cip1/SdII

Protein p21Waf1/Cip1/SdII (p21) belongs to the KIP/CIP
family of CDK inhibitors. Gene encoding for p21 is
localised on chromosome 6p21. It has been shown that
p21 inhibits activity of each member of the cyclin/CDK
family and thus it is a universal inhibitor of cyclin de-
pendent kinases. In normal cells p21 creates quaternary
complexes together with CDK, cyclin and proliferative
cell nuclear antigen (PCNA). It is interesting that ac-
cording to stoichiometry of the cyclin/CDK/p21 com-
plex it may function as a factor stimulating kinase activity
or as an inhibitor41. Apart from inhibiting cyclin/CDK
complexes, protein p21 also interacts with complex
PCNA-DNA polymerase δ. It is, as well, an essential
protein for DNA replication and repair42. In the case of
DNA damage, p21 is a key protein for inducing G1 cell
cycle arrest. Its expression is regulated by tumour sup-
pressor gene p5343. In addition, in human cells p53 as
well as p21 appear to be important for maintaining the
G2 checkpoint44. This aside, p21 may be activated in
a p53 independent way, mainly during development45.
Protein p21 also exerts other cell functions such as
differentiation, senescence or apoptosis. However, the
role of p21 in apoptosis induction remains controver-
sial46.

The role of p21 expression in prostate cancer and its
prognostic value is at the present little understood. Mu-
tations of p21, in contrast to mutations of p53 and pRb,
should be very rare in tumour cells47. However, SSCP
analysis of primary tumours of the prostate, which lacked
demonstrable p53 mutations, revealed that 18 % of the
tumours carried p21 mutations48. LOH involving chro-
mosome 6p, where p21 gene is also localised (6p21.2),
has been found in prostate cancer. Loss of p21 activity
may thus contribute to progression of prostate can-
cer11, 49.

The relation between p21 and cell proliferation,
apoptosis, expression of p53 and Bcl-2 is very variable
and the clinical significance of p21 immunostaining is

still unclear. In prostate cancer cell lines, p21 has an
inhibitory influence on cell growth but in clinical studies
of prostate cancer the role of p21 is almost untou-
ched50, 51. Byrne et al. showed via immunohistochemical
analysis of p21 protein in a series of 40 tumour samples
no correlation between p21 immunoreactivity and tu-
mour progression, grade or stage52. Further immunohis-
tochemical analysis of p21 expression in 213 cases carried
out by Aaltomaa et al. however demonstrated that p21
expression is significantly linked to high Gleason score,
aneuploidy, high cell number in the S phase and also to
expression of Ki-67, Bcl-2, cyclins A and D. p21 expres-
sion in this study significantly correlated with unfa-
vourable prognosis and p21 was thus described as an
independent predictor of survival in prostate cancer
patients51. Other recent studies confirm these findings.
Sarkar et al. showed the correlation between p21 ex-
pression, pathological stage and Gleason score. They
also found differences in values of p21 as a prognostic
marker of disease-free survival in Caucasians vs. Afri-
can Americans and suggested that progression to pros-
tate cancer may have different mechanisms in different
ethnic groups53. A correlation between p21 and prolifer-
ation has also been described54, 55. In both studies posi-
tivity of p21 was linked to high proliferative index Ki-67.
Overexpression of p21 before and after androgen depri-
vation therapy may characterise a subgroup of advanced
carcinomas of the prostate with paradoxically high pro-
liferative index and significantly poorer prognosis. In
patients after radical prostatectomy, not treated by
neoadjuvant therapy, a p21 positive phenotype occurred
in connection with shortened relapse period56. Accor-
ding to Cheng et al. however, p21 positivity was a positive
predictor of survival57.

The relation between p53 and p21 expression is also
debatable. A relation exists between these proteins for
example in cases of breast cancer but not in tumours of
the pancreas. Aaltoma et al. however found no correla-
tion in prostate cancer samples51. The relation between
p21 and p53 expression is complex and seems to be
specific for single tumour types. Osman et al. found
a significant relation between p21 and MDM2 expres-
sion. These authors assume that progression to prostate
tumour involves inactivation of p53 due to overexpres-
sion of MDM2 and that transactivation of p21 is caused
by an p53 independent signal pathway55.

There are also interesting works focused on the rela-
tion between androgens, AR and p21 expression. Agus
et al. studied factors connected to regression of prostate
cancer after androgen deprivation. They found that in
early phases after androgen withdrawal AR expression
was decreased, followed by transient increase in p53
and p21 protein expression58. In an androgen-indepen-
dent cell line derived from parental LNCaP cell line it
has been shown that the use of antisense oligonucleotides
against AR caused reduction of AR levels leading to
increase in p21 expression and partial restoration of
androgen-dependence59. In other work it has been de-
monstrated that androgens stimulated endogenous p21
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gene expression at the transcription level. The andro-
gen-responsive element (ARE), which mediates the re-
sponse to androgens and increases transcription of p21,
is located within 2.4 kb p21 gene promotor. Increase in
p21 gene expression by androgens shows that p21 may
have an antiapoptotic function in epithelial cells60. Modu-
lation of p21 expression by androgens has been also
confirmed immunohistochemically61.

p27Kip1

Protein p27Kip1 (p27) belongs to the CIP/KIP family
of CDK inhibitors. Gene coding for p27 is localised on
chromosome 12p13 (ref.62). Expression of p27 is regu-
lated by contact inhibition and specific growth factors
(for example TGF-beta, IL-2, cAMP). p27 expression
levels are higher in quiescent and differentiating cells.
Protein p27 accumulates in the G1 phase of the cell
cycle and causes its arrest. When the cell enters the cell
cycle following mitogenic stimulation, p27 is proteo-
lytically degraded and the p27 mediated repression of
complexes cyclin E/cdk2 is released. Apart from its pre-
sumed role as a tumour supressor, many other functions
are attributed to p27 such as regulation of drug resistence
in solid tumours, as an auxiliary factor in apoptosis,
etc.63

Elucidating the role of p27 as CDK inhibitor in
normal and neoplastic cells has to date been the focus of
major attention. It has been shown that loss of p27
protein expression may lead to tumour development
and progression. Absence of p27 in tumours is con-
nected to poor prognosis although surprisingly few p27
mutations have been described in tumours47. Lowered
levels of p27 in tumours are caused chiefly at post-
transcriptional levels owing to a higher degradation by
the ubiquitin/proteasome pathway. Another important
mechanism for p27 degradation seems to be phospho-
rylation. Among further mechanisms connected to regu-
lation of p27 expression are methylation and regulation
on the protein synthesis level (mRNA stability, localisa-
tion and translation)64.

The actual diagnostic and prognostic significance of
p27 expression in different tumours has been investi-
gated more recently. Virtually all studies have shown
low expression of p27 in more aggressive tumours and
a number have confirmed the usefulness of p27 as an
independent prognostic and/or diagnostic marker in
a wide spectrum of human tumours including carci-
noma of breast, tumour of large intestine, adenocarci-
noma of prostate, esophagal adenocarcinoma, nonsmall
cell lung cancer, malignant melanoma and endocrine
tumours63, 65. Mutational inactivation of p27 in tumours
of the prostate is infrequent47. Methylation CpG islets
has also been described. However it is not frequent and
does not seem to be the mechanism responsible for
deregulation of p27 (ref.66). No further mutations have
been identified67.

A series of studies analysed p27 expression in pro-
static adenocarcinomas. Guo et al. for example first
showed the correlation between loss of protein expres-
sion, higher grade of tumour and proliferative status68.
Their results were confirmed in further studies. In addi-
tion p27 expression indirectly correlated with higher
Gleason score, with occurrence of metastasis to lym-
phatic glands, and anueploidy69, 70. It has also been shown
that low p27 expression is an independent predictor of
treatment failure and an independent prognostic factor
for relapsing illness or shorter survival time63, 71, 72. Tho-
mas et al. used p27 to preselect patients with high risk of
relapse. In their group of patients p27 expression in
preoperative samples significantly correlated with p27
expression in samples after radical prostatectomy73. p27
expression in benign lesions is not clear. Cordon-Cardo
et al. found almost undetectable levels of protein p27
and p27 mRNA in BPH in epithelial cells and the stro-
mal cells of BPH lesions. This finding would support the
concept that BPH is not a precursor to prostate can-
cer74. By contrast, other work using immunohistochemi-
cal determination of p27 in normal and in benign
prostatic epithelium, as well as studies of the possible
existence of abnormalities in the progression of prostatic
carcinomas, found that p27 expression is expressed con-
stitutively in normal and benign prostate tissue75. Its
expression is apparently lowered following neoplastic
progression from preinvasive lesions to invasive carci-
nomas and metastasis. There is, in addition, an interes-
ting study showing that cell cycle regulators are potential
epigenic targets for the prevention of prostate cancer
through suitable dietary supplements such as silymarin,
genisten, and EGCG76.

Fas (Apo-1/CD95)

Fas (Apo-1/CD95) is a death receptor belonging to
the tumour necrosis factor receptor (TNFR) family. It
is a cell-surface receptor protein which may initiate
certain intracellular signalling pathways leading to
apoptosis77, 78. It may be activated by its natural ligands
(FasL/CD95L) or nonspecifically by antibodies against
its internal domain. Fas and FasL play an important role
in these types of physiological apoptosis where they
exert control chiefly in the immune system. They may
also contribute to cancer cell’s escape from immune
system control. Mutations of the genes coding for Fas or
FasL may lead to lymphoproliferative and autoimmune
diseases79. FasL is a homotrimeric molecule and each
FasL binds three molecules of Fas. Trimerisation of Fas
results in the recruitment of the cell death inducing
signalling complex (DISC) which includes the adaptor
protein FADD and procaspase 8 (ref.78). Activation of
caspase 8 in turn leads to activation of the execution
phase of the apoptotic programme. This appears to
follow one of two pathways: (1) via direct cleavage and
activation of caspase 3 or (2) by indirectly causing the
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release of mitochondrial cytochrome c. This creates
apoptosom with APAF-1 and procaspase 9 (ref.80).

The importance of the Fas signalling cascade in pros-
tate cells was shown in apoptosis induced by castration
in normal rat prostate81. Fas is expressed in several
prostatic carcinoma cell lines but its in vivo expression
in normal prostate and in prostate cancer is poorly
understood. Diaz et al. showed Fas expression in secre-
tory cells in benign samples of prostatic tissue, expres-
sion in all locally growing tumours and significantly
decreased expression in prostate carcinomas compared
with benign prostate. The decrease was inversely rela-
ted to the malignant grade of the tumours. Diminished
expression of Fas according to this study seems to be an
early molecular event in prostate cancer82. Mutations of
the Fas gene might be involved in proliferative diseases
of the prostate by prolongation of programmed cell
death of prostatic epithelial cells. Takayama et al. de-
tected Fas mutations exclusively in high-grade prostatic
intraepithelial neoplasia (HGPIN) (14.3 %) and LOH
occasionally found in HGPIN and prostate cancer. These
results also show that genetic instability may occur du-
ring the early phase of prostate carcinogenesis83. The
evidence from several studies shows that activation of
the Fas/FasL pathway is connected with sensitisation of
androgen-independent human prostatic cells during
apoptotic response to different chemotherapeutic com-
pounds84, 85. The pathways leading to Fas mediated
apoptosis in prostate cancer cell lines are intact as sug-
gested from apoptotic program which may be triggered
either by Fas-ligation in the Fas-sensitive cell lines PC3
and ALVA31 or by rendering the Fas-resistant cell lines
DU145 and JCA1 by Fas combined treatment with anti-
Fas monoclonal antibody and cycloheximide86. Further
works have shown that the mitochondrial pathway is
implicated in Fas-mediated apoptosis in prostate cancer
cell lines87. Two of the early events after Fas ligation are
the release of cytochrome c from the mitochondria and
activation of caspase 9. Processed is also protein Bid
and this might activate the mitochondria-dependent
apoptotic cascade. Induction of Fas-mediated apoptotis
in prostate cancer cell lines using different external Fas
agonists i.e., anti-Fas antibodies and membrane-bound
FasL, does not seem to be very successful. Adenovirus-
mediated intracellular expression of FasL seems to be
more potent and thus potentially exploitable for gene
therapy of prostate cancer88, 89. If prostatic epithelial cells
harbour intact a Fas signalling pathway, sensitisation of
androgen-independent tumours to Fas-induced apoptosis
becomes an appealing therapeutic target, with potential
clinical application in treating advanced prostate cancer6.

CONCLUSION

Tumour progression can be ascribed to an imbalance
between proliferation and programmed cell death, which
is caused by alterations in the genes essential for regula-
tion of cell growth, differentiation and apoptosis. Re-

fractoriness of many types of cancer to available anti-
cancer therapy is very often connected with the selec-
tion or acquisition of molecular mechanisms suppressing
cell death induction. These mechanisms frequently in-
volve an aberrant expression or function of cell death
effectors and growth inhibitors, such as Fas, p21Waf1/Cip1,
p27Kip1 or Rb and PTEN tumour suppressor genes. Re-
cently, analysis of these gene products has yielded im-
portant prognostic information for many tumour types.
Although a great deal of knowledge about the role of
the tumour suppressors and CDK inhibitors in the cell
cycle progression and tumour development has accu-
mulated, there are still many unanswered questions.
Loss of the function of these genes, potentially invol-
ving several different mechanisms, appears to play a role
in prostate cancer tumourigenesis, particularly in can-
cer progression. These recent insights into the molecu-
lar basis of cancer and advances in our understanding of
the integrated functions governing cell proliferation and
apoptosis can permit development of novel therapeutic
modalities and new strategies involving the restoration
of cell death signalling pathways.
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