Biomedical papers - Ahead of Print

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. X:X | 10.5507/bp.2018.015

M1/M2 macrophage polarization in human obese adipose tissue

Jaroslava Chylikovaa, Jana Dvorackovab, Zdenek Tauberc, Vojtech Kamaradc
a Department of Histology and Embryology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
b Department of Pathology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
c Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic

Obesity and insulin resistance are closely associated with chronic inflammation in adipose tissue, where macrophages play an important role. Adipose tissue macrophages can be divided into two main phenotypes: the classical M1 macrophages and alternatively activated macrophages M2. M1 macrophages produce pro-inflammatory cytokines (TNF-α, interleukin IL-6 and MCP-1) and thus contribute to the development of insulin resistance. On the other hand, M2 macrophages, anti-inflammatory, are involved in the maintenance of tissue homeostasis and are typical in the adipose tissue of slender individuals. Macrophages can also play a role in the pathogenesis of other serious illnesses such as cardiovascular diseases or cancer. This article reviews the latest data on macrophage polarization in adipose tissue.

Keywords: M1/M2 macrophages, adipose tissue, obesity, inflammation, chemokines

Received: December 12, 2017; Accepted: March 27, 2018; Prepublished online: May 16, 2018


References

  1. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112(12):1796-808. Go to PubMed...
  2. Castoldi A, Naffah de Souza C, Câmara NO, Moraes-Vieira PM. The Macrophage Switch in Obesity Development. Front Immunol 2016;6:637. Go to PubMed...
  3. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;112(12):1821-30. Go to PubMed...
  4. Hardy OT, Perugini RA, Nicoloro SM, Gallagher-Dorval K, Puri V, Straubhaar J, Czech MP. Body mass index-independent inflammation in omental adipose tissue associated with insulin resistance in morbid obesity. Surg Obes Relat Dis 2011;7(1):60-7. Go to PubMed...
  5. Heilbronn LK, Campbell LV. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr Pharm Des 2008;14(12):1225-30. Go to PubMed...
  6. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D, Bouillot JL, Bouloumié A, Barbatelli G, Cinti S, Svensson PA, Barsh GS, Zucker JD, Basdevant A, Langin D, Clément K. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 2005;54(8):2277-86. Go to PubMed...
  7. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006;116(6):1494-505. Go to PubMed...
  8. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007;117(1):175-84. Go to PubMed...
  9. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 2007;56(1):16-23. Go to PubMed...
  10. Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 2008;57(12):3239-46. Go to PubMed...
  11. Gordon S. The macrophage. Bioessays 1995;17(11):977-86. Go to PubMed...
  12. Bruun JM, Lihn AS, Pedersen SB, Richelsen B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J Clin Endocrinol Metab 2005;90(4):2282-9. Go to PubMed...
  13. Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell 2007;131(2):242-56. Go to PubMed...
  14. Harman-Boehm I, Blüher M, Redel H, Sion-Vardy N, Ovadia S, Avinoach E, Shai I, Klöting N, Stumvoll M, Bashan N, Rudich A. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab 2007;92(6):2240-7. Go to PubMed...
  15. Curat CA, Wegner V, Sengenès C, Miranville A, Tonus C, Busse R, Bouloumié A. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 2006;49(4):744-7. Go to PubMed...
  16. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest 2011;121(6):2094-101. Go to PubMed...
  17. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005;46(11):2347-55. Go to PubMed...
  18. Murano I, Barbatelli G, Parisani V, Latini C, Muzzonigro G, Castellucci M, Cinti S. Dead adipocytes, detected as crown-like structures (CLS), are prevalent in visceral fat depots of genetically obese mice. J Lipid Res 2008;49(7):1562-8. Go to PubMed...
  19. Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW 2nd, DeFuria J, Jick Z, Greenberg, Obin MS. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007;56(12):2910-8. Go to PubMed...
  20. Murdolo G, Hammarstedt A, Sandqvist M, Schmelz M, Herder C, Smith U, Jansson PA. Monocyte chemoattractant protein-1 in subcutaneous abdominal adipose tissue: characterization of interstitial concentration and regulation of gene expression by insulin. J Clin Endocrinol Metab 2007;92(7):2688-95. Go to PubMed...
  21. Westerbacka J, Corner A, Kolak M, Makkonen J, Turpeinen U, Hamsten A, Fisher RM, Yki-Järvinen H. Insulin regulation of MCP-1 in human adipose tissue of obese and lean women. Am J Physiol Endocrinol Metab 2008;294(5):841-5. Go to PubMed...
  22. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, Shimomura I. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 2007;56(4): 901-11. Go to PubMed...
  23. Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 2007;293(4):E1118-28. Go to PubMed...
  24. Wang B, Wood I, Trayhurn P. Hypoxia induces leptin gene expression and secretion in human preadipocytes: differential effects of hypoxia on adipokine expression by preadipocytes. J Endocrinol 2008;198(1):127-34. Go to PubMed...
  25. Guo G, Jin S, Hu H, Zhou Y, Yan Y, Zong H, Wang Y, He H, Oh Y, Liu C, Gu N. Hypoxia in 3T3-L1 adipocytes suppresses adiponectin expression via the PERK and IRE1 unfolded protein response. Biochem Biophys Res Commun 2017;493(1):346-51. Go to PubMed...
  26. Suganami T, Nishida J, Ogawa Y. A paracrine look between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 2005;25(10):2062-8. Go to PubMed...
  27. Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J, Zechner R, Ferrante AW Jr. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest 2010;120(10):3466-79. Go to PubMed...