Biomedical papers - Ahead of Print

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. X:X | 10.5507/bp.2016.063

Models for the study of skin wound healing. The role of Nrf2 and NF-κB

Nikola Ambrozovaa,b, Jitka Ulrichovaa,b, Adela Galandakovaa,b
a Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
b Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic

Nrf2 and NF-κB transcription factors act in wound healing via their anti-inflammatory and anti-oxidant effects or through the immune response. Studying this process is a matter of some importance given the high cost of wound treatment. A major contribution in this regard is being made by models that enable investigation of the involvement of multiple factors in wound healing and testing new curative substances. This literature review was carried out via searches in the PubMed and Web of Science databases up to 2016. It covers skin wound healing, available models for its study (part I), the role of Nrf2 and NF-κB, substances that influence them and whether they can be used as markers (part II). Was found that in vitro assays are used for their availability but a holistic view must be established in vivo. In silico approaches are facilitating assessment of a vast amount of research data. Nfr2 and NF-κB play a crucial and reciprocal role in wound healing. Nrf2 controls repair-associated inflammation and protects against excessive accumulation of ROS while Nf-κB activates the innate immune reaction, proliferation and migration of cells, modulates expression of matrix metalloproteinases, secretion and stability of cytokines and growth factors for wound healing.

Keywords: skin wound healing, in vitro and in vivo models, Nrf2, NF-κB

Received: September 13, 2016; Accepted: December 13, 2016; Prepublished online: January 6, 2017


References

  1. Gottrup F. A specialized wound-healing center concept: importance of a multidisciplinary department structure and surgical treatment facilities in the treatment of chronic wounds. Am J Surg 2004;187(5):S38-S43. Go to original source... Go to PubMed...
  2. Thomas DR. Age-related changes in wound healing. Drugs Aging 2001;18(8):607-20. Go to original source... Go to PubMed...
  3. Posnett J, Gottrup F, Lundgren H, Saal G. The resource impact of wounds on health-care providers in Europe. J Wound Care 2009;18(4):154-61. Go to original source... Go to PubMed...
  4. Korybalska K, Kawka E, Breborowicz A, Witowski J. Atorvastatin does not impair endothelial cell wound healing in an in vitro model of vascular injury. J Physiol Pharmacol 2012;63(4):389-95. Go to PubMed...
  5. Morain W, Colen L. Wound healing in diabetes mellitus. Clin Plast Surg 1990;17(3):493-501. Go to PubMed...
  6. Kottra CJ. Wound healing in the immunosuppressed host. AORN J 1982;35(6):1142-8. Go to original source... Go to PubMed...
  7. Gondim RM, Vieira VC, Veras MM, Ferreira MA, Caldini ÉTEG, Muñoz DR, Baptista MS. Protoporphyrin fluorescence induced by methyl-ALA in skin healing. Photodiagnosis Photodyn Ther 2013;10(4):389-98. Go to original source... Go to PubMed...
  8. Gong C, Wu Q, Wang Y, Zhang D, Luo F, Zhao X, Wei Y, Qian Z. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 2013;34(27):6377-87. Go to original source... Go to PubMed...
  9. Fan Z, Liu B, Wang J, Zhang S, Lin Q, Gong P, Ma L, Yang S. A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Adv Funct Mater 2014;24(25):3933-43. Go to original source...
  10. Kondo T, Ishida Y. Molecular pathology of wound healing. Forensic Sci Int 2010;203(1):93-8. Go to original source... Go to PubMed...
  11. Serrano I, Díez-Marqués ML, Rodríguez-Puyol M, Herrero-Fresneda I, Dedhar S, Ruiz-Torres MP, Rodríguez-Puyol D. Integrin-linked kinase (ILK) modulates wound healing through regulation of hepatocyte growth factor (HGF). Exp Cell Res 2012;318(19):2470-81. Go to original source... Go to PubMed...
  12. Schreml S, Szeimies R-M, Prantl L, Landthaler M, Babilas P. Wound healing in the 21st century. J Am Acad Dermatol 2010;63(5):866-81. Go to original source... Go to PubMed...
  13. Enoch S, Leaper DJ. Basic science of wound healing. Surgery (UK) 2008;26(2):31-7.
  14. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003;83(3):835-70. Go to PubMed...
  15. Wild T, Rahbarnia A, Kellner M, Sobotka L, Eberlein T. Basics in nutrition and wound healing. Nutrition 2010;26(9):862-6. Go to original source... Go to PubMed...
  16. Gill SE, Parks WC. Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 2008;40(6):1334-47. Go to original source... Go to PubMed...
  17. Young A, McNaught C-E. The physiology of wound healing. Surgery (Oxford) 2011;29(10):475-9. Go to original source...
  18. Nix DP, Bryant RA. Acute and Chronic Wounds: Current Management Concepts. Amsterdam: Elsevier Health Sciences; 2012.
  19. Flanagan M. Wound Healing and Skin Integrity: Principles and Practice. Hoboken: John Wiley and Sons; 2013.
  20. Velander P, Theopold C, Bleiziffer O, Bergmann J, Svensson H, Feng Y, Eriksson E. Cell suspensions of autologous keratinocytes or autologous fibroblasts accelerate the healing of full thickness skin wounds in a diabetic porcine wound healing model. J Surg Res 2009;157(1):14-20. Go to original source... Go to PubMed...
  21. Pietramaggiori G, Scherer SS, Mathews JC, Alperovich M, Yang HJ, Neuwalder J, Czeczuga JM, Chan RK, Wagner CT, Orgill DP. Healing modulation induced by freeze-dried platelet-rich plasma and micronized allogenic dermis in a diabetic wound model. Wound Repair Regen 2008;16(2):218-25. Go to original source... Go to PubMed...
  22. Kiwanuka E, Hackl F, Philip J, Caterson EJ, Junker JP, Eriksson E. Comparison of healing parameters in porcine full-thickness wounds transplanted with skin micrografts, split-thickness skin grafts, and cultured keratinocytes. J Am Coll Surg 2011;213(6):728-35. Go to original source... Go to PubMed...
  23. Wong VW, Sorkin M, Glotzbach JP, Longaker MT, Gurtner GC. Surgical approaches to create murine models of human wound healing. Biomed Res Int 2010;2011 Go to PubMed...
  24. Gottrup F, Ågren MS, Karlsmark T. Models for use in wound healing research: a survey focusing on in vitro and in vivo adult soft tissue. Wound Repair Regen 2000;8(2):83-96. Go to original source... Go to PubMed...
  25. Gouin J-P, Kiecolt-Glaser JK. The impact of psychological stress on wound healing: methods and mechanisms. Immunol Allergy Clin North Am 2011;31(1):81-93. Go to original source... Go to PubMed...
  26. Coulomb B, Dubertret L. Skin cell culture and wound healing. Wound Repair Regen 2002;10(2):109-12. Go to original source... Go to PubMed...
  27. Regnier M, Patwardhan A, Scheynius A, Schmidt R. Reconstructed human epidermis composed of keratinocytes, melanocytes and Langerhans cells. Med Biol Eng Comput 1998;36(6):821-4. Go to original source... Go to PubMed...
  28. Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K. Skin tissue engineering-in vivo and in vitro applications. Adv Drug Deliv Rev 2011;63(4):352-66. Go to original source... Go to PubMed...
  29. Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC, Lawley TJ. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 1992;99(6):683-90. Go to original source... Go to PubMed...
  30. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014;41(1):14-20. Go to original source... Go to PubMed...
  31. Wolf NB, Küchler S, Radowski MR, Blaschke T, Kramer KD, Weindl G, Kleuser B, Haag R, Schäfer-Korting M. Influences of opioids and nanoparticles on in vitro wound healing models. Eur J Pharm Biopharm 2009;73(1):34-42. Go to original source... Go to PubMed...
  32. Walter M, Wright KT, Fuller H, MacNeil S, Johnson WEB. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Exp Cell Res 2010;316(7):1271-81. Go to original source... Go to PubMed...
  33. Liu X. The role of silver nanoparticles on skin wound healing, tissue remodeling and their potential cytotoxicity. A Thesis presented for the degree of PhD. in the University of Hong Kong; 2013.
  34. Shi G, Wang B, Wu Q, Wang T, Wang C, Sun X, Zong W-t, Yan M, Zhao Q-c, Chen Y. Evaluation of the wound-healing activity and anti-inflammatory activity of aqueous extracts from Acorus calamus L. Pak J Pharm Sci 2014;27(1):91-5. Go to PubMed...
  35. Fusenig NE, Boukamp P. Multiple stages and genetic alterations in immortalization, malignant transformation, and tumor progression of human skin keratinocytes. Mol Carcinog 1998;23(3):144-58. Go to original source... Go to PubMed...
  36. Wang Z, Wang Y, Farhangfar F, Zimmer M, Zhang Y. Enhanced keratinocyte proliferation and migration in co-culture with fibroblasts. PLoS One 2012;7(7):e40951. Go to original source... Go to PubMed...
  37. Kolditz F, Krausze J, Heinz D, Niemann H, Müller-Goymann C. Wound healing potential of a dimeric InlB variant analyzed by in vitro experiments on re-epithelialization of human skin models. Eur J Pharm Biopharm 2014;86(2):277-83. Go to original source... Go to PubMed...
  38. Sato T, Kirimura Y, Mori Y. The co-culture of dermal fibroblasts with human epidermal keratinocytes induces increased prostaglandin E 2 production and cyclooxygenase 2 activity in fibroblasts. J Invest Dermatol 1997;109(3):334-9. Go to original source... Go to PubMed...
  39. Black AF, Berthod F, L'heureux N, Germain L, Auger FA. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 1998;12(13):1331-40. Go to PubMed...
  40. Kim W-S, Park B-S, Sung J-H, Yang J-M, Park S-B, Kwak S-J, Park J-S. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. Journal of dermatological science 2007;48(1):15-24. Go to original source... Go to PubMed...
  41. Jeon YK, Jang YH, Yoo DR, Kim SN, Lee SK, Nam MJ. Mesenchymal stem cells' interaction with skin: Wound-healing effect on fibroblast cells and skin tissue. Wound Repair Regen 2010;18(6):655-61. Go to original source... Go to PubMed...
  42. Pianigiani E, Ierardi F, Mazzanti B, Saccardi R, Cuciti C, Fimiani M, editors. Human de-epidermized dermis as a stem cell carrier. Transplantation proceedings; 2010: Elsevier.
  43. Carlson MW, Alt-Holland A, Egles C, Garlick JA. Three-Dimensional Tissue Models of Normal and Diseased Skin. Curr Protoc Cell Biol 2008:19.9. 1-.9. 7. Go to original source... Go to PubMed...
  44. Tandon N, Cimetta E, Villasante A, Kupferstein N, Southall MD, Fassih A, Xie J, Sun Y, Vunjak-Novakovic G. Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway. Exp Cell Res 2014;320(1):79-91. Go to original source... Go to PubMed...
  45. Smithmyer ME, Sawicki LA, Kloxin AM. Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease. Biomater Sci 2014;2(5):634-50. Go to original source... Go to PubMed...
  46. Fernandez TL, Van Lonkhuyzen DR, Dawson RA, Kimlin MG, Upton Z. In vitro investigations on the effect of dermal fibroblasts on keratinocyte responses to ultraviolet B radiation. Photochem Photobiol 2014;90(6):1332-9. Go to original source... Go to PubMed...
  47. Weber C, Muller-Goymann C. Usefulness of a 3D skin construct in the detection of regenerative effects after previous SDS damage. J Drug Deliv Sci Technol 2009;19(5):337-42. Go to original source... Go to PubMed...
  48. Gurjala AN, Geringer MR, Seth AK, Hong SJ, Smeltzer MS, Galiano RD, Leung KP, Mustoe TA. Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound Repair Regen 2011;19(3):400-10. Go to original source... Go to PubMed...
  49. Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc 2000;5(1):40-6. Go to original source... Go to PubMed...
  50. McGuire L, Heffner K, Glaser R, Needleman B, Malarkey W, Dickinson S, Lemeshow S, Cook C, Muscarella P, Melvin WS. Pain and wound healing in surgical patients. Ann Behav Med 2006;31(2):165-72. Go to original source... Go to PubMed...
  51. Auerbach R, Kubai L, Knighton D, Folkman J. A simple procedure for the long-term cultivation of chicken embryos. Dev Biol 1974;41(2):391-4. Go to original source... Go to PubMed...
  52. French SS, Matt KS, Moore MC. The effects of stress on wound healing in male tree lizards (Urosaurus ornatus). Gen Comp Endocrinol 2006;145(2):128-32. Go to original source... Go to PubMed...
  53. Volk SW, Bohling MW. Comparative wound healing-Are the small animal veterinarian's clinical patients an improved translational model for human wound healing research? Wound Repair Regen 2013;21(3):372-81. Go to original source... Go to PubMed...
  54. Liu J, Kim D, Brown L, Madsen T, Bouchard G. Comparison of Human, Porcine, and Rodent Wound Healing With New Miniature Swine Study Data. In: Journal of the American association for laboratory animal science. 2009;48(5):581.
  55. Oznurlu Y, Celik I, Sur E, Telatar T, Ozparlak H. Comparative skin histology of the White New Zealand and Angora rabbits: histometrical and immunohistochemical evaluations. J Anim Vet Adv 2009;8(9):1694-701.
  56. Wester RC, Maibach HI. In vivo methods for percutaneous absorption measurements. J Toxicol Cutaneous Ocul Toxicol 2001;20(4):411-22. Go to original source...
  57. Jain K, Sykes V, Kordula T, Lanning D. Homeobox genes Hoxd3 and Hoxd8 are differentially expressed in fetal mouse excisional wounds. J Surg Res 2008;148(1):45-8. Go to original source... Go to PubMed...
  58. Nagappa A, Cheriyan B. Wound healing activity of the aqueous extract of Thespesia populnea fruit. Fitoterapia 2001;72(5):503-6. Go to original source... Go to PubMed...
  59. Wang X-Q, Liu P-Y, Kempf M, Cuttle L, Chang AH-E, Wong M, Kravchuk O, Mill J, Kimble RM. Burn healing is dependent on burn site: a quantitative analysis from a porcine burn model. Burns 2009;35(2):264-9. Go to original source... Go to PubMed...
  60. Gerstenhaber JA, Brodsky R, Huneke RB, Lelkes PI. Electrospun soy protein scaffolds as wound dressings: Enhanced reepithelialization in a porcine model of wound healing. Wound Med 2014;5:9-15.
  61. Seitz O, Schürmann C, Hermes N, Müller E, Pfeilschifter J, Frank S, Goren I. Wound healing in mice with high-fat diet-or ob gene-induced diabetes-obesity syndromes: a comparative study. Exp Diabetes Res 2011;2010
  62. Rowan AN. Ending the Use of Animals in Toxicity Testing and Risk Evaluation. Camb Q Healthc Ethics 2015;24(04):448-58. Go to original source... Go to PubMed...
  63. Ojeh N, Stojadinovic O, Pastar I, Sawaya A, Yin N, Tomic-Canic M. The effects of caffeine on wound healing. Int Wound J 2014;
  64. Balaji S, Moles CM, Bhattacharya SS, LeSaint M, Dhamija Y, Le LD, King A, Kidd M, Bouso MF, Shaaban A. Comparison of interleukin 10 homologs on dermal wound healing using a novel human skin ex vivo organ culture model. J Surg Res 2014;190(1):358-66. Go to original source... Go to PubMed...
  65. Mirastschijski U, Impola U, Karsdal MA, Saarialho-Kere U, Ågren MS. Matrix metalloproteinase inhibitor BB-3103 unlike the serine proteinase inhibitor aprotinin abrogates epidermal healing of human skin wounds ex vivo1. J Invest Dermatol 2002;118(1):55-64. Go to original source... Go to PubMed...
  66. Fredriksson C, Kratz G, Huss F. Accumulation of silver and delayed re-epithelialization in normal human skin: an ex-vivo study of different silver dressings. Wounds 2009;21(5):116-23. Go to PubMed...
  67. Bouffard NA, Cutroneo KR, Badger GJ, White SL, Buttolph TR, Ehrlich HP, Stevens-Tuttle D, Langevin HM. Tissue stretch decreases soluble TGF-β1 and type-1 procollagen in mouse subcutaneous connective tissue: Evidence from ex vivo and in vivo models. J Cell Physiol 2008;214(2):389-95. Go to original source... Go to PubMed...
  68. Shaterian A, Borboa A, Sawada R, Costantini T, Potenza B, Coimbra R, Baird A, Eliceiri BP. Real-time analysis of the kinetics of angiogenesis and vascular permeability in an animal model of wound healing. Burns 2009;35(6):811-7. Go to original source... Go to PubMed...
  69. Sherratt JA, Dallon JC. Theoretical models of wound healing: past successes and future challenges. C R Biol 2002;325(5):557-64. Go to original source... Go to PubMed...
  70. Cumming BD, McElwain D, Upton Z. A mathematical model of wound healing and subsequent scarring. Interface Focus 2010;7(42):19-34.
  71. Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF. Impaired wound healing. Clin Dermatol 2007;25(1):19-25. Go to original source... Go to PubMed...
  72. Milatovic S, Nanney LB, Yu Y, White JR, Richmond A. Impaired healing of nitrogen mustard wounds in CXCR2 null mice. Wound Repair Regen 2003;11(3):213-9. Go to original source... Go to PubMed...
  73. Stepp MA, Zieske JD, Trinkaus-Randall V, Kyne BM, Pal-Ghosh S, Tadvalkar G, Pajoohesh-Ganji A. Wounding the cornea to learn how it heals. Exp Eye Res 2014;121:178-93. Go to original source... Go to PubMed...
  74. Werthen M, Henriksson L, Jensen PØ, Sternberg C, Givskov M, Bjarnsholt T. An in vitro model of bacterial infections in wounds and other soft tissues. Apmis 2010;118(2):156-64. Go to original source... Go to PubMed...
  75. Mustoe TA, O'Shaughnessy K, Kloeters O. Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Recontr Surg 2006;117(7S):35S-41S. Go to original source... Go to PubMed...
  76. Ekuni D, Firth JD, Nayer T, Tomofuji T, Sanbe T, Irie K, Yamamoto T, Oka T, Liu Z, Vielkind J. Lipopolysaccharide-induced epithelial monoamine oxidase mediates alveolar bone loss in a rat chronic wound model. Am J Pathol 2009;175(4):1398-409. Go to original source... Go to PubMed...
  77. Trøstrup H, Thomsen K, Christophersen LJ, Hougen HP, Bjarnsholt T, Jensen PØ, Kirkby N, Calum H, Høiby N, Moser C. Pseudomonas aeruginosa biofilm aggravates skin inflammatory response in BALB/c mice in a novel chronic wound model. Wound Repair Regen 2013;21(2):292-9. Go to original source... Go to PubMed...
  78. Bonomo SR, Davidson JD, Tyrone JW, Lin X, Mustoe TA. Enhancement of wound healing by hyperbaric oxygen and transforming growth factor β3 in a new chronic wound model in aged rabbits. Arch Surg 2000;135(10):1148-53. Go to original source... Go to PubMed...
  79. auf dem Keller U, Kümin A, Braun S, Werner S. Reactive oxygen species and their detoxification in healing skin wounds. J Investig Dermatol Symp Proc 2006;11(1):106-11. Go to original source... Go to PubMed...
  80. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013;53:401. Go to original source... Go to PubMed...
  81. Beyer T, Auf dem Keller U, Braun S, Schafer M, Werner S. Roles and mechanisms of action of the Nrf2 transcription factor in skin morphogenesis, wound repair and skin cancer. Cell Death Differ 2007;14(7):1250-4. Go to original source... Go to PubMed...
  82. Braun S, Hanselmann C, Gassmann MG, auf dem Keller U, Born-Berclaz C, Chan K, Kan YW, Werner S. Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound. Mol Cell Biol 2002;22(15):5492-505. Go to original source... Go to PubMed...
  83. Piao MS, Choi J-Y, Lee D-H, Yun SJ, Lee J-B, Lee S-C. Differentiation-dependent expression of NADP (H): quinone oxidoreductase-1 via NF-E2 related factor-2 activation in human epidermal keratinocytes. J Dermatol Sci 2011;62(3):147-53. Go to original source... Go to PubMed...
  84. Lee J, Johnson J. An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol 2004;37(2):139. Go to PubMed...
  85. Pedersen TX, Leethanakul C, Patel V, Mitola D, Lund LR, Danø K, Johnsen M, Gutkind JS, Bugge TH. Laser capture microdissection-based in vivo genomic profiling of wound keratinocytes identifies similarities and differences to squamous cell carcinoma. Oncogene 2003;22(25):3964-76. Go to original source... Go to PubMed...
  86. Kim J, Cha Y-N, Surh Y-J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res 2010;690(1):12-23. Go to original source... Go to PubMed...
  87. Schäfer M, Werner S. Transcriptional control of wound repair. Annu Rev Cell Dev Biol 2007;23:69-92. Go to original source... Go to PubMed...
  88. Long M, de la Vega MR, Wen Q, Bharara M, Jiang T, Zhang R, Zhou S, Wong PK, Wondrak GT, Zheng H. An essential role of NRF2 in diabetic wound healing. Diabetes 2016;65(3):780-93. Go to original source... Go to PubMed...
  89. Sporn MB, Liby KT. Cancer chemoprevention: scientific promise, clinical uncertainty. Nat Clin Pract Oncol 2005;2(10):518-25. Go to original source... Go to PubMed...
  90. Ma Q, He X. Molecular basis of electrophilic and oxidative defense: promises and perils of Nrf2. Pharmacol Rev 2012;64(4):1055-81. Go to original source... Go to PubMed...
  91. Balogun E, Hoque M, Pengfei G, Killeen E, Green CJ, Foresti R, Jawed A, Motterlini R. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 2003;371(3):887-95. Go to original source... Go to PubMed...
  92. Shin J-W, Ohnishi K, Murakami A, Lee J-S, Kundu JK, Na H-K, Ohigashi H, Surh Y-J. Zerumbone induces heme oxygenase-1 expression in mouse skin and cultured murine epidermal cells through activation of Nrf2. Cancer Prev Res 2011;4(6):860-70. Go to original source... Go to PubMed...
  93. Chen H-H, Chen Y-T, Huang Y-W, Tsai H-J, Kuo C-C. 4-Ketopinoresinol, a novel naturally occurring ARE activator, induces the Nrf2/HO-1 axis and protects against oxidative stress-induced cell injury via activation of PI3K/AKT signaling. Free Radic Biol Med 2012;52(6):1054-66. Go to original source... Go to PubMed...
  94. Werner S. Keratinocyte growth factor: a unique player in epithelial repair processes. Cytokine Growth Factor Rev 1998;9(2):153-65. Go to original source... Go to PubMed...
  95. Braun S, auf dem Keller U, Steiling H, Werner S. Fibroblast growth factors in epithelial repair and cytoprotection. Philos Trans R Soc Lond B Biol Sci 2004;359(1445):753-7. Go to original source... Go to PubMed...
  96. Alam J, Killeen E, Gong P, Naquin R, Hu B, Stewart D, Ingelfinger JR, Nath KA. Heme activates the heme oxygenase-1 gene in renal epithelial cells by stabilizing Nrf2. Am J Physiol Renal Physiol 2003;284(4):F743-F52. Go to original source... Go to PubMed...
  97. Nath KA, Haggard JJ, Croatt AJ, Grande JP, Poss KD, Alam J. The indispensability of heme oxygenase-1 in protecting against acute heme protein-induced toxicity in vivo. Am J Pathol 2000;156(5):1527-35. Go to original source... Go to PubMed...
  98. Bellezza I, Mierla AL, Minelli A. Nrf2 and NF-κB and their concerted modulation in cancer pathogenesis and progression. Cancers 2010;2(2):483-97. Go to original source... Go to PubMed...
  99. Sun Z, Wu T, Zhao F, Lau A, Birch CM, Zhang DD. KPNA6 (Importin α7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response. Mol Cell Biol 2011;31(9):1800-11. Go to original source... Go to PubMed...
  100. Geismann C, Arlt A, Sebens S, Schafer H. Cytoprotection "gone astray": Nrf2 and its role in cancer. Onco Targets Ther 2014;7:1497-518. Go to PubMed...
  101. Limonciel A, Jennings P. A review of the evidence that ochratoxin A is an Nrf2 inhibitor: implications for nephrotoxicity and renal carcinogenicity. Toxins 2014;6(1):371-9. Go to original source... Go to PubMed...
  102. Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse M, Schreiber S, Schäfer H. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 2013;32(40):4825-35. Go to original source... Go to PubMed...
  103. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144(5):646-74. Go to original source... Go to PubMed...
  104. Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta Gene Regul Mech 2010;1799(10):775-87. Go to original source... Go to PubMed...
  105. Ghosh S, May MJ, Kopp EB. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998;16(1):225-60. Go to original source... Go to PubMed...
  106. Jobin C, Sartor RB. The IκB/NF-κB system: a key determinant of mucosal inflammation and protection. Am J Physiol Cell Physiol 2000;278(3):C451-C62. Go to PubMed...
  107. Oeckinghaus A, Ghosh S. The NF-κB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2009;1(4):a000034. Go to original source... Go to PubMed...
  108. May MJ, Ghosh S. Rel/NF-κB and IκB proteins: an overview. Semin Cancer Biol 1997;8(2):63-73. Go to original source... Go to PubMed...
  109. Bonizzi G, Karin M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004;25(6):280-8. Go to original source... Go to PubMed...
  110. Tak PP, Gerlag DM, Aupperle KR, Van De Geest DA, Overbeek M, Bennett BL, Boyle DL, Manning AM, Firestein GS. Inhibitor of nuclear factor κB kinase β is a key regulator of synovial inflammation. Arthritis Rheum 2001;44(8):1897-907. Go to original source... Go to PubMed...
  111. Lizzul PF, Aphale A, Malaviya R, Sun Y, Masud S, Dombrovskiy V, Gottlieb AB. Differential expression of phosphorylated NF-κB/RelA in normal and psoriatic epidermis and downregulation of NF-κB in response to treatment with etanercept. J Invest Dermatol 2005;124(6):1275-83. Go to original source... Go to PubMed...
  112. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J 1996;10(7):709-20. Go to PubMed...
  113. Schreiber S, Nikolaus S, Hampe J. Activation of nuclear factor κB in inflammatory bowel disease. GUT 1998;42(4):477-84. Go to original source... Go to PubMed...
  114. Brasier AR. The NF-κB regulatory network. Cardiovasc Toxicol 2006;6(2):111-30. Go to original source... Go to PubMed...
  115. Burstein E, Duckett CS. Dying for NF-κB? Control of cell death by transcriptional regulation of the apoptotic machinery. Curr Opin Cell Biol 2003;15(6):732-7. Go to original source... Go to PubMed...
  116. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappa B as the matchmaker. Nat Immunol 2011;12(8):715-23. Go to original source... Go to PubMed...
  117. Na J, Lee K, Na W, Shin J-Y, Lee M-J, Yune TY, Lee HK, Jung H-S, Kim WS, Ju B-G. Histone H3K27 demethylase JMJD3 in cooperation with NF-κB regulates keratinocyte wound healing. J Invest Dermatol 2016;
  118. Ogura H, Arima Y, Kamimura D, Murakami M. The gateway theory: How regional neural activation creates a gateway for immune cells via an inflammation amplifier. Biomed J 2013;36(6):269. Go to PubMed...
  119. Brasier AR, Recinos A, Eledrisi MS. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol 2002;22(8):1257-66. Go to original source... Go to PubMed...
  120. Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 2008;7(2):83-105. Go to original source... Go to PubMed...
  121. Schreck R, Grassmann R, Fleckenstein B, Baeuerle P. Antioxidants selectively suppress activation of NF-kappa B by human T-cell leukemia virus type I Tax protein. J Virol 1992;66(11):6288-93. Go to PubMed...
  122. Chen AC, Arany PR, Huang Y-Y, Tomkinson EM, Sharma SK, Kharkwal GB, Saleem T, Mooney D, Yull FE, Blackwell TS. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 2011;6(7):e22453. Go to original source... Go to PubMed...
  123. Brach M, Hass R, Sherman M, Gunji H, Weichselbaum R, Kufe D. Ionizing radiation induces expression and binding activity of the nuclear factor kappa B. J Clin Invest 1991;88(2):691. Go to original source... Go to PubMed...
  124. Wickremasinghe MI, Thomas LH, Friedland JS. Pulmonary epithelial cells are a source of IL-8 in the response to Mycobacterium tuberculosis: essential role of IL-1 from infected monocytes in a NF-κB-dependent network. J Immunol 1999;163(7):3936-47. Go to PubMed...
  125. Karin M. How NF-κB is activated: the role of the IκB kinase (IKK) complex. Oncogene 1999;18(49) Go to original source... Go to PubMed...
  126. Barisic S, Strozyk E, Peters N, Walczak H, Kulms D. Identification of PP2A as a crucial regulator of the NF-κB feedback loop: its inhibition by UVB turns NF-κB into a pro-apoptotic factor. Cell Death Differ 2008;15(11):1681-90. Go to original source... Go to PubMed...
  127. Allen C, Saigal K, Nottingham L, Arun P, Chen Z, Van Waes C. Bortezomib-induced apoptosis with limited clinical response is accompanied by inhibition of canonical but not alternative nuclear factor-κB subunits in head and neck cancer. Clin Cancer Res 2008;14(13):4175-85. Go to original source... Go to PubMed...
  128. Higuchi M, Singh S, Chan H, Aggarwal B. Protease inhibitors differentially regulate tumor necrosis factor-induced apoptosis, nuclear factor-kappa B activation, cytotoxicity, and differentiation. Blood 1995;86(6):2248-56. Go to PubMed...
  129. Lin Y-Z, Yao S, Veach RA, Torgerson TR, Hawiger J. Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J Biol Chem 1995;270(24):14255-8. Go to original source... Go to PubMed...
  130. Chen Lf, Mu Y, Greene WC. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB. EMBO J 2002;21(23):6539-48. Go to original source... Go to PubMed...
  131. Zhang S, Won Y-K, Ong C-N, Shen H-M. Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Curr Med Chem Anticancer Agents 2005;5(3):239-49. Go to original source... Go to PubMed...
  132. Hiscott J, Nguyen TA, Arguello M, Nakhaei P, Paz S. Manipulation of the nuclear factor-κB pathway and the innate immune response by viruses. Oncogene 2006;25(51):6844-67. Go to original source... Go to PubMed...
  133. De Bosscher K, Berghe WV, Haegeman G. Cross-talk between nuclear receptors and nuclear factor κB. Oncogene 2006;25(51):6868-86. Go to original source... Go to PubMed...
  134. Takada Y, Bhardwaj A, Potdar P, Aggarwal BB. Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-κB activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation. Oncogene 2004;23(57):9247-58. Go to original source... Go to PubMed...
  135. Kalaitzidis D, Gilmore TD. Transcription factor cross-talk: the estrogen receptor and NF-κB. Trends Endocrinol Metab 2005;16(2):46-52. Go to original source... Go to PubMed...
  136. Meyer S, Kohler NG, Joly A. Cyclosporine A is an uncompetitive inhibitor of proteasome activity and prevents NF-κB activation. FEBS Lett 1997;413(2):354-8. Go to original source... Go to PubMed...
  137. Morgan MJ, Liu Z-g. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 2011;21(1):103-15. Go to original source... Go to PubMed...
  138. Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW. When NRF2 talks, who's listening? Antioxid Redox Signal 2010;13(11):1649-63. Go to original source... Go to PubMed...
  139. Healy ZR, Lee NH, Gao X, Goldring MB, Talalay P, Kensler TW, Konstantopoulos K. Divergent responses of chondrocytes and endothelial cells to shear stress: cross-talk among COX-2, the phase 2 response, and apoptosis. Proc Natl Acad Sci U S A 2005;102(39):14010-5. Go to original source... Go to PubMed...
  140. Bekyarova G, Tzaneva M. Melatonin Ameliorates Burn-Induced Liver Injury by Modulation of Nrf2 and Nf-kB Signaling Pathways. SOJ immunol 2015;3(2). doi:10.15226/soji/3/2/00128 Go to original source...
  141. Anderson RR, Farinelli W, Laubach H, Manstein D, Yaroslavsky AN, Gubeli J, Jordan K, Neil GR, Shinn M, Chandler W. Selective photothermolysis of lipid-rich tissues: a free electron laser study. Lasers Surg Med 2006;38(10):913-9. Go to original source... Go to PubMed...
  142. Andrews SN, Jeong E, Prausnitz MR. Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm Res 2013;30(4):1099-109. Go to original source... Go to PubMed...
  143. Calabro K, Curtis A, Galarneau J-R, Krucker T, Bigio IJ. Gender variations in the optical properties of skin in murine animal models. J Biomed Opt 2011;16(1):011008. Go to original source... Go to PubMed...
  144. Çömelekoğlu Ü, Yalin S, Balli E, Berköz M. Ovariectomy decreases biomechanical quality of skin via oxidative stress in rat. Turk J Med Sci 2012;42(2):201-9.
  145. Lynch SE, Colvin RB, Antoniades HN. Growth factors in wound healing. Single and synergistic effects on partial thickness porcine skin wounds. J Clin Invest 1989;84(2):640-6. Go to original source... Go to PubMed...
  146. Ma T, Hara M, Sougrat R, Verbavatz J-M, Verkman A. Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J Biol Chem 2002;277(19):17147-53. Go to original source... Go to PubMed...
  147. Monteiro-Riviere NA, Bristol DG, Manning TO, Rogers RA, Riviere JE. Interspecies and interregional analysis of the comparative histologic thickness and laser Doppler blood flow measurements at five cutaneous sites in nine species. J Invest Dermatol 1990;95(5):582-6. Go to original source... Go to PubMed...
  148. Ngawhirunpat T, Hatanaka T, Katayama K, Yoshikawa H, Kawakami J, Adachi I. Changes in electrophysiological properties of rat skin with age. Biol Pharm Bull 2002;25(9):1192-6. Go to original source... Go to PubMed...
  149. Noisakran S, Onlamoon N, Songprakhon P, Hsiao H-M, Chokephaibulkit K, Perng GC. Cells in dengue virus infection in vivo. Adv Virol 2010;2010. Go to original source... Go to PubMed...
  150. Pires-de-Campos MSM, Leonardi GR, Chorilli M, Spadari-Bratfisch RC, Polacow MLO, Grassi-Kassisse DM. The effect of topical caffeine on the morphology of swine hypodermis as measured by ultrasound. J Cosmet Dermatol 2008;7(3):232-7. Go to original source... Go to PubMed...
  151. Sabourin CL, Danne MM, Buxton KL, Casillas RP, Schlager JJ. Cytokine, chemokine, and matrix metalloproteinase response after sulfur mustard injury to weanling pig skin. J Biochem Mol Toxicol 2002;16(6):263-72. Go to original source... Go to PubMed...
  152. Sokolov VE. Mammal skin. Oakland: University of California Press; 1982.
  153. Vargas G, Chan EK, Barton JK, Rylander HG, Welch AJ. Use of an agent to reduce scattering in skin. Lasers Surg Med 1999;24(2):133-41. Go to original source... Go to PubMed...
  154. Yagci A, Zik B, Uguz C, Altunbas K. Histology and morphometry of white New Zealand rabbit skin. Indian Vet J 2006;83(8):876-80.
  155. Behm B, Babilas P, Landthaler M, Schreml S. Cytokines, chemokines and growth factors in wound healing. J Eur Acad Dermatol Venereol 2012;26(7):812-20. Go to original source... Go to PubMed...