Biomedical papers - Ahead of Print

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. X:X | 10.5507/bp.2016.057

Starvation- and antibiotics-induced formation of persister cells in Pseudomonas aeruginosa

Patrik Mlynarcik, Milan Kolar
Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic

Background: Planktonic stationary and exponential cultures of Pseudomonas aeruginosa are highly resistant to killing by bactericidal antimicrobials because of the presence of persisters, cells that are multidrug tolerant and play a key role in the recalcitrance of biofilm infections.

Aim: The aim of this study was to investigate the formation of persister cells in P. aeruginosa stationary vs. exponential cultures using different class antimicrobials.

Methods: The susceptibilities of P. aeruginosa PAO1 wild-type and mutant strains to antimicrobials were determined by standard microtiter broth dilution method. In order to determine persister formation, dose- and time-dependent killing experiments were performed with antibiotics.

Results: Ceftazidime (Cephalosporin) showed little efficacy against either culture. Stationary-phase cells were more tolerant to imipenem (Carbapenem) than exponential cells, leaving a small fraction of persisters at high imipenem concentration in both populations. Polymyxin B (Polymyxin) appeared to be ineffective at low concentrations against both cell populations. Very high polymyxin B concentration completely eradicated exponential cells and regrowth was seen in a stationary population. Stationary cells were more tolerant to tobramycin (Aminoglycoside) than exponential cells but a higher concentration of tobramycin completely eliminated survivors. Ciprofloxacin (Fluoroquinolone) at a low concentration resulted in killing of both cultures of P. aeruginosa, producing persisters that were invulnerable to killing.

Conclusions: Stationary cells appear to be somewhat more tolerant than exponential cells in all of these assays. We also showed that nutrient deprivation (serine starvation) regulated by stringent and general stress response, contribute to the increased tolerance of P. aeruginosa exponential and stationary planktonic cells via production of persisters.

Keywords: antimicrobials, persisters, tolerance, P. aeruginosa, planktonic, serine hydroxamate, mutant

Received: June 23, 2016; Accepted: November 9, 2016; Prepublished online: November 23, 2016


References

  1. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K. Persister cells and tolerance to antimicrobials. FEMS microbiology letters 2004;230(1):13-8. Go to original source... Go to PubMed...
  2. Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol 2007;5(1):48-56. Go to original source... Go to PubMed...
  3. Hansen S, Lewis K, Vulic M. Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrobial agents and chemotherapy 2008;52(8):2718-26. Go to original source... Go to PubMed...
  4. Li Y, Zhang Y. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrobial agents and chemotherapy 2007;51(6):2092-9. Go to original source... Go to PubMed...
  5. De Groote VN, Verstraeten N, Fauvart M, Kint CI, Verbeeck AM, Beullens S, Cornelis P, Michiels J. Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. FEMS microbiology letters 2009;297(1):73-9. Go to original source... Go to PubMed...
  6. Murakami K, Ono T, Viducic D, Kayama S, Mori M, Hirota K, Nemoto K, Miyake Y. Role for rpoS gene of Pseudomonas aeruginosa in antibiotic tolerance. FEMS microbiology letters 2005;242(1):161-7. Go to original source... Go to PubMed...
  7. Viducic D, Ono T, Murakami K, Susilowati H, Kayama S, Hirota K, Miyake Y. Functional analysis of spoT, relA and dksA genes on quinolone tolerance in Pseudomonas aeruginosa under nongrowing condition. Microbiol Immunol 2006;50(4):349-57. Go to original source... Go to PubMed...
  8. Viducic D, Ono T, Murakami K, Katakami M, Susilowati H, Miyake Y. rpoN gene of Pseudomonas aeruginosa alters its susceptibility to quinolones and carbapenems. Antimicrobial agents and chemotherapy 2007;51(4):1455-62. Go to original source... Go to PubMed...
  9. Kayama S, Murakami K, Ono T, Ushimaru M, Yamamoto A, Hirota K, Miyake Y. The role of rpoS gene and quorum-sensing system in ofloxacin tolerance in Pseudomonas aeruginosa. FEMS microbiology letters 2009;298(2):184-92. Go to original source... Go to PubMed...
  10. Moker N, Dean CR, Tao J. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. Journal of bacteriology 2010;192(7):1946-55. Go to original source... Go to PubMed...
  11. Shao Y, Harrison EM, Bi D, Tai C, He X, Ou H-Y, Rajakumar K, Deng Z. TADB: a web-based resource for Type 2 toxin-antitoxin loci in bacteria and archaea. Nucleic acids research 2011;39(Database issue):D606-11.
  12. Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, McKay G, Siehnel R, Schafhauser J, Wang Y, Britigan BE, Singh PK. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 2011;334(6058):982-6. Go to original source... Go to PubMed...
  13. Khakimova M, Ahlgren HG, Harrison JJ, English AM, Nguyen D. The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance. J Bacteriol 2013;195(9):2011-20. Go to original source... Go to PubMed...
  14. Erental A, Sharon I, Engelberg-Kulka H. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol 2012;10(3):e1001281. Go to original source... Go to PubMed...
  15. Aizenman E, Engelberg-Kulka H, Glaser G. An Escherichia coli chromosomal "addiction module" regulated by guanosine [corrected] 3',5'-bispyrophosphate: a model for programmed bacterial cell death. Proc Natl Acad Sci U S A 1996;93(12):6059-63.
  16. Carmona-Gutierrez D, Kroemer G, Madeo F. When death was young: an ancestral apoptotic network in bacteria. Mol Cell 2012;46(5):552-4. Go to original source... Go to PubMed...
  17. Yeung ATY, Bains M, Hancock REW. The sensor kinase CbrA is a global regulator that modulates metabolism, virulence, and antibiotic resistance in Pseudomonas aeruginosa. Journal of bacteriology 2011;193(4):918-31. Go to original source... Go to PubMed...
  18. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 2008;3(2):163-75. Go to original source... Go to PubMed...
  19. Vogt SL, Green C, Stevens KM, Day B, Erickson DL, Woods DE, Storey DG. The stringent response is essential for Pseudomonas aeruginosa virulence in the rat lung agar bead and Drosophila melanogaster feeding models of infection. Infection and immunity 2011;79(10):4094-104. Go to original source... Go to PubMed...
  20. Erickson DL, Lines JL, Pesci EC, Venturi V, Storey DG. Pseudomonas aeruginosa relA contributes to virulence in Drosophila melanogaster. Infection and immunity 2004;72(10):5638-45. Go to original source... Go to PubMed...
  21. Moker N, Dean CR, Tao J. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol 2010;192(7):1946-55. Go to original source... Go to PubMed...
  22. Overhage J, Bains M, Brazas MD, Hancock RE. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol 2008;190(8):2671-9. Go to original source... Go to PubMed...
  23. Khakimova M, Ahlgren HG, Harrison JJ, English AM, Nguyen D. The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance. J Bacteriol 2013;195(9):2011-20. Go to original source... Go to PubMed...
  24. Spoering AL, Lewis K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. Journal of bacteriology 2001;183(23):6746-51. Go to original source... Go to PubMed...
  25. Rodriguez-Martinez J-M, Poirel L, Nordmann P. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy 2009;53(11):4783-8. Go to original source... Go to PubMed...
  26. Cheng K, Smyth RL, Govan JR, Doherty C, Winstanley C, Denning N, Heaf DP, van Saene H, Hart CA. Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet 1996;348(9028):639-42. Go to original source... Go to PubMed...
  27. Anwar H, Dasgupta M, Lam K, Costerton JW. Tobramycin resistance of mucoid Pseudomonas aeruginosa biofilm grown under iron limitation. The Journal of antimicrobial chemotherapy 1989;24(5):647-55. Go to original source... Go to PubMed...
  28. Gordon CA, Hodges NA, Marriott C. Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. The Journal of antimicrobial chemotherapy 1988;22(5):667-74. Go to original source... Go to PubMed...
  29. Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 2011;473(7346):216-20. Go to original source... Go to PubMed...
  30. Choi M-J, Ko KS. Mutant prevention concentrations of colistin for Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae clinical isolates. The Journal of antimicrobial chemotherapy 2014;69(1):275-7. Go to original source... Go to PubMed...
  31. Dorr T, Vulic M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 2010;8(2):e1000317. Go to original source... Go to PubMed...
  32. Keren I, Shah D, Spoering A, Kaldalu N, Lewis K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. Journal of bacteriology 2004;186(24):8172-80. Go to original source... Go to PubMed...
  33. Baharoglu Z, Mazel D. Vibrio cholerae triggers SOS and mutagenesis in response to a wide range of antibiotics: a route towards multiresistance. Antimicrobial agents and chemotherapy 2011;55(5):2438-41. Go to original source... Go to PubMed...
  34. Kaldalu N, Mei R, Lewis K. Killing by ampicillin and ofloxacin induces overlapping changes in Escherichia coli transcription profile. Antimicrobial agents and chemotherapy 2004;48(3):890-6. Go to original source... Go to PubMed...
  35. Maisonneuve E, Shakespeare LJ, Jorgensen MG, Gerdes K. Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci U S A 2011;108(32):13206-11. Go to original source... Go to PubMed...
  36. Higgins PG, Fluit AC, Milatovic D, Verhoef J, Schmitz FJ. Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents 2003;21(5):409-13. Go to original source... Go to PubMed...
  37. Brazas MD, Breidenstein EB, Overhage J, Hancock RE. Role of lon, an ATP-dependent protease homolog, in resistance of Pseudomonas aeruginosa to ciprofloxacin. Antimicrob Agents Chemother 2007;51(12):4276-83. Go to original source... Go to PubMed...
  38. Gutierrez A, Laureti L, Crussard S, Abida H, Rodriguez-Rojas A, Blazquez J, Baharoglu Z, Mazel D, Darfeuille F, Vogel J, Matic I. beta-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat Commun 2013;4:1610. Go to original source... Go to PubMed...
  39. Bachman MA, Swanson MS. The LetE protein enhances expression of multiple LetA/LetS-dependent transmission traits by Legionella pneumophila. Infection and immunity 2004;72(6):3284-93. Go to original source... Go to PubMed...
  40. Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS. ppGpp conjures bacterial virulence. Microbiol Mol Biol Rev 2010;74(2):171-99. Go to original source... Go to PubMed...
  41. Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppee J-Y, Ghigo J-M, Beloin C. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet 2013;9(1):e1003144. Go to original source... Go to PubMed...