Biomedical papers, 2016 (vol. 160), issue 4

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016, 160(4):553-558 | 10.5507/bp.2016.032

Genotoxic changes in peripheral lymphocytes after therapeutic exposure to crude coal tar and ultraviolet radiation

Andrea Malkovaa, Renata Kohlerovab, Zdenek Fialaa, Kvetoslava Hamakovac, Iva Selke-Krulichovad, Lenka Borskae
a Department of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
b Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
c Clinic of Dermal and Venereal Disease, University Hospital Hradec Kralove, Czech Republic
d Department of Medical Biophysic, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
e Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic Coresponding autor: Lenka Borska, e-mail: borka@lfhk.cuni.cz

Aims: Goeckerman therapy is based on combined exposure to UV radiation (UVA, UVB) and crude coal tar (PAHs). Some indicators suggest a genotoxic hazard, however, the level of genotoxic risk of the therapy has not yet been investigated sufficiently. This study aims to assesss the genotoxic risk.

Methods: The studied group consisted of patients with chronic stable plaque psoriasis treated by Goeckerman therapy (n = 29). Heparin-treated peripheral blood samples were collected one day before the first treatment and immediately after the last procedure. The lymphocytes were isolated from the blood. The level of genotoxicity was evaluated using an alkaline version of the Comet assay which detects DNA single strand breaks (DNA-SSBs), a neutral version of the Comet assay which detects DNA double strand breaks (DNA-DSBs), and using chromosomal aberrations.

Results: The level of DNA-SSBs increased insignificantly (median; Q1-Q3): 1.4 (0.4; 0.1-1.4) vs. 2.5 (0.6; 0.3-2.7) %tDNA (P = 0.11) and the level of DNA-DSBs increased significantly: 7.8 (6.5; 3.4-10.5) vs. 20.7 (19.3; 14.2-24.6) % DNA (P < 0.001). The total number of aberrated cells (P < 0.001) and structurally aberrated cells (P < 0.001) increased significantly.

Conclusion: The elevated levels of the DNA-DSBs and the chromosomal aberrations in the peripheral lymphocytes indicated a genotoxic hazard. However, the elevated level of the chromosomal abnormalities was below the upper level of the reference range for healthy Czech adults. While, the genotoxic risk appears to be low, Goeckerman treatment represents a further contribution to the lifetime load of genotoxic factors.

Keywords: crude coal tar, ultraviolet radiation, genotoxicity, comet assay, chromosomal aberrations

Received: January 14, 2016; Accepted: June 1, 2016; Prepublished online: June 9, 2016; Published: December 12, 2016


References

  1. Gupta R, Debbaneh M, Butler D, Huynh M, Levin E, Leon A, Koo J, Liao W. The Goeckerman regimen for the treatment of moderate to severe psoriasis. J Vis Exp 2013(77):e50509. Go to original source...
  2. Borska L, Andrys C, Krejsek J, Palicka V, Vorisek V, Hamakova K, Kremlacek J, Borsky P, Fiala Z. Influence of dermal exposure to ultraviolet radiation and coal tar (polycyclic aromatic hydrocarbons) on the skin aging process. J Dermatol Sci 2016;81(3):192-202. Go to original source... Go to PubMed...
  3. Zampetti A, Barone A, Antuzzi D, Amerio P, Tulli A, Feliciani C, Amerio P. Topical preparations for the treatment of psoriasis: results of a retrospective study over 15 years. J Dermatolog Treat 2008;19(3):134-40. Go to original source... Go to PubMed...
  4. Moscaliuc ML, Heller MM, Lee ES, Koo J. Goeckerman therapy: a very effective, yet often forgotten treatment for severe generalized psoriasis. J Dermatolog Treat 2013;24(1):34-7. Go to original source... Go to PubMed...
  5. Steele T, Pawaskar M, Balkrishnan R, Fleischer A, Feldman SR. Does cost-effectiveness play a role in clinical trials? Dermatol Ther 2007;20(2):110-9. Go to original source... Go to PubMed...
  6. Borska L, Fiala Z, Andrys C, Krejsek J, Hamakova K. Goeckerman regimen: genotoxic, pro-apoptotic, anti-inflammatory and anti-angiogenic effect. Dermatology Research: Focus on Acne, Melanoma, and Psoriasis 2010;11788:141-65. Go to PubMed...
  7. IARC. IARC Monographs on the evaluation of Carcinogenic Risks to Human. Agents Classified by the IARC Monographs. International Agency for Research on Cancer. Lyon: Cedex 08 2014:1-109.
  8. Cosmetic Ingredient Review Expert Panel. Final safety assessment of Coal Tar as used in cosmetics. Int J Toxicol 2008;27 Suppl 2:1-24. Go to original source...
  9. Sage E, Girard PM, Francesconi S. Unravelling UVA-induced mutagenesis. Photochem Photobiol Sci 2012;11(1):74-80. Go to original source... Go to PubMed...
  10. Lamore SD, Wondrak GT. UVA causes dual inactivation of cathepsin B and L underlying lysosomal dysfunction in human dermal fibroblasts. J Photochem Photobiol B 2013;123:1-12. Go to original source... Go to PubMed...
  11. He YY, Pi J, Huang JL, Diwan BA, Waalkes MP, Chignell CF. Chronic UVA irradiation of human HaCaT keratinocytes induces malignant transformation associated with acquired apoptotic resistance. Oncogene 2006;25(26):3680-8. Go to original source... Go to PubMed...
  12. de Laat A, van der Leun JC, de Gruijl FR. Carcinogenesis induced by UVA (365-nm) radiation: the dose-time dependence of tumor formation in hairless mice. Carcinogenesis 1997;18(5):1013-20. Go to original source... Go to PubMed...
  13. Svobodova AR, Galandakova A, Sianska J, Dolezal D, Lichnovska R, Ulrichova J, Vostalova J. DNA damage after acute exposure of mice skin to physiological doses of UVB and UVA light. Arch Dermatol Res 2012;304(5):407-12. Go to original source... Go to PubMed...
  14. Osipov AN, Smetanina NM, Pustovalova MV, Arkhangelskaya E, Klokov D. The formation of DNA single-strand breaks and alkali-labile sites in human blood lymphocytes exposed to 365-nm UVA radiation. Free Radic Biol Med 2014;73:34-40. Go to original source... Go to PubMed...
  15. Burke KE, Wei H. Synergistic damage by UVA radiation and pollutants. Toxicol Ind Health 2009;25(4-5):219-24. Go to original source... Go to PubMed...
  16. Borska L, Andrys C, Krejsek J, Palicka V, Chmelarova M, Hamakova K, Kremlacek J, Fiala Z. Oxidative Damage to Nucleic Acids and Benzo(a)pyrene-7,8-diol-9,10-epoxide-DNA Adducts and Chromosomal Aberration in Children with Psoriasis Repeatedly Exposed to Crude Coal Tar Ointment and UV Radiation. Oxidative Medicine and Cellular Longevity 2014;2014:10. Go to original source...
  17. Avery SV. Molecular targets of oxidative stress. Biochem J 2011;434(2):201-10. Go to original source... Go to PubMed...
  18. Jayakumar R, Sasikala K. Evaluation of DNA damage in jewellery workers occupationally exposed to nitric oxide. Environ Toxicol Pharmacol 2008;26(2):259-61. Go to original source... Go to PubMed...
  19. Olive PL, Banath JP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 2006;1(1):23-9. Go to original source... Go to PubMed...
  20. Sasaki YF, Nakamura T, Kawaguchi S. What is better experimental design for in vitro comet assay to detect chemical genotoxicity? 2008:449-504.
  21. Chandirasekar R, Kumar BL, Sasikala K, Jayakumar R, Suresh K, Venkatesan R, Jacob R, Krishnapriya EK, Kavitha H, Ganesh GK. Assessment of genotoxic and molecular mechanisms of cancer risk in smoking and smokeless tobacco users. Mutat Res Genet Toxicol Environ Mutagen 2014;767:21-7. Go to original source... Go to PubMed...
  22. Cerna M, Spevackova V, Batariova A, Smid J, Cejchanova M, Ocadlikova D, Bavorova H, Benes B, Kubinova R. Human biomonitoring system in the Czech Republic. International Journal of Hygiene and Environmental Health 2007;210(3-4):495-9. Go to original source... Go to PubMed...
  23. Moretti M, Bonfiglioli R, Feretti D, Pavanello S, Mussi F, Grollino MG, Villarini M, Barbieri A, Ceretti E, Carrieri M, Buschini A, Appolloni M, Dominici L, Sabatini L, Gelatti U, Bartolucci GB, Poli P, Stronati L, Mastrangelo G, Monarca S. A study protocol for the evaluation of occupational mutagenic/carcinogenic risks in subjects exposed to antineoplastic drugs: a multicentric project. BMC Public Health 2011;11:195. Go to original source... Go to PubMed...
  24. AHEM. Standardized operating approaches for biological monitoring of genotoxic of environmental factors. Acta Hygienica, Epidemiologica et Microbiologica 2003;3:6-17.
  25. Merlo DF, Ceppi M, Stagi E, Bocchini V, Sram RJ, Rössner P. Baseline chromosome aberrations in children. Toxicology Letters 2007;172(1-2):60-7. Go to original source... Go to PubMed...
  26. Urushibara A, Kodama S, Yokoya A. Induction of genetic instability by transfer of a UV-A-irradiated chromosome. Mutat Res Genet Toxicol Environ Mutagen 2014;766:29-34. Go to original source... Go to PubMed...
  27. Wang Y, Yang H, Li L, Wang H, Xia X, Zhang C. Biomarkers of chromosomal damage in peripheral blood lymphocytes induced by polycyclic aromatic hydrocarbons: a meta-analysis. Int Arch Occup Environ Health 2012;85(1):13-25. Go to original source... Go to PubMed...
  28. Roelofzen JH, Aben KK, van der Valk PG, van Houtum JL, van de Kerkhof PC, Kiemeney LA. Coal tar in dermatology. J Dermatolog Treat 2007;18(6):329-34. Go to original source... Go to PubMed...
  29. Ranna D, Andrys C, Krejsek J, Hamakova K, Kremlacek J, Fiala Z, Borsky P, Borska L. Elevated levels of circulating biomarkers of cell death (nucleosomes) in the patients with plaque psoriasis treated with the Goeckerman regimen. Bratisl Lek Listy 2014;115(4):229-32. Go to PubMed...
  30. de Rie MA, Goedkoop AY, Bos JD. Overview of psoriasis. Dermatol Ther 2004;17(5):341-9. Go to PubMed...
  31. Hoffmann H, Speit G. Assessment of DNA damage in peripheral blood of heavy smokers with the comet assay and the micronucleus test. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2005;581(1-2):105-14. Go to original source...
  32. Buchynska L, Brieieva O, Glushchenko N, Vorobyova L, Bilyk O. DNA repair deficiency in peripheral blood lymphocytes of endometrial cancer patients with a family history of cancer. BMC Cancer 2014;14:765. Go to original source... Go to PubMed...
  33. de Freitas TA, Palazzo RP, de Andrade FM, Reichert CL, Pechansky F, Kessler F, de Farias CB, de Andrade GG, Leistner-Segal S, Maluf SW. Genomic instability in human lymphocytes from male users of crack cocaine. Int J Environ Res Public Health 2014;11(10):10003-15. Go to original source... Go to PubMed...
  34. Collins A, Koppen G, Valdiglesias V, Dusinska M, Kruszewski M, Møller P, Rojas E, Dhawan A, Benzie I, Coskun E, Moretti M, Speit G, Bonassi S. The comet assay as a tool for human biomonitoring studies: The ComNet Project. Mutation Research/Reviews in Mutation Research 2014;759(0):27-39. Go to original source...
  35. Olive PL, Wlodek D, Banath JP. DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res 1991;51(17):4671-6. Go to PubMed...
  36. Hintze J. NCSS, PASS, and GESS. NCSS. Kaysville, Utah 2007.
  37. Marczynski B, Raulf-Heimsoth M, Spickenheuer A, Pesch B, Kendzia B, Mensing T, Engelhardt B, Lee EH, Schindler BK, Heinze E, Welge P, Bramer R, Angerer J, Breuer D, Kafferlein HU, Bruning T. DNA adducts and strand breaks in workers exposed to vapours and aerosols of bitumen: associations between exposure and effect. Arch Toxicol 2011;85 Suppl 1:S53-64. Go to original source... Go to PubMed...
  38. Moustafa GA, Xanthopoulou E, Riza E, Linos A. Skin disease after occupational dermal exposure to coal tar: a review of the scientific literature. Int J Dermatol 2015;54(8):868-79. Go to original source... Go to PubMed...
  39. Obe G, Johannes C, Ritter S. The number and not the molecular structure of DNA double-strand breaks is more important for the formation of chromosomal aberrations: a hypothesis. Mutat Res 2010;701(1):3-11. Go to original source... Go to PubMed...
  40. Pauk N, Klimesova S, Kara J, Topinka J, Labaj J. The relevance of monitoring of antibodies against the polycyclic aromatic hydrocarbon (PAH) and PAH-DNA adducts in serum in relation to lung cancer and chronic obstructive pulmonary disease (COPD). Neoplasma 2013;60(2):182-7. Go to original source... Go to PubMed...
  41. Hininger I, Chollat-Namy A, Sauvaigo S, Osman M, Faure H, Cadet J, Favier A, Roussel A-M. Assessment of DNA damage by comet assay on frozen total blood: method and evaluation in smokers and non-smokers. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2004;558(1-2):75-80. Go to original source...
  42. Binková B, Lewtas J, Mísková I, Rössner P, Cerná M, Mrácková G, Peterková K, Mumford J, Meyer S, Srám R. Biomarker studies in northern Bohemia. Environmental Health Perspectives 1996;104(Suppl 3):591-7. Go to original source... Go to PubMed...
  43. Cebulska-Wasilewska A, Wiechec A, Panek A, Binkova B, Sram RJ, Farmer PB. Influence of environmental exposure to PAHs on the susceptibility of lymphocytes to DNA-damage induction and on their repair capacity. Mutat Res 2005;588(2):73-81. Go to original source... Go to PubMed...
  44. Cebulska-Wasilewska A, Pawlyk I, Panek A, Wiechec A, Kalina I, Popov T, Georgieva T, Farmer PB. Exposure to environmental polycyclic aromatic hydrocarbons: influences on cellular susceptibility to DNA damage (sampling Kosice and Sofia). Mutat Res 2007;620(1-2):145-54. Go to original source... Go to PubMed...
  45. Rapp A, Greulich KO. After double-strand break induction by UV-A, homologous recombination and nonhomologous end joining cooperate at the same DSB if both systems are available. J Cell Sci 2004;117(Pt 21):4935-45. Go to original source... Go to PubMed...
  46. Baumgartner A, Kurzawa-Zegota M, Laubenthal J, Cemeli E, Anderson D. Comet-assay parameters as rapid biomarkers of exposure to dietary/environmental compounds-An in vitro feasibility study on spermatozoa and lymphocytes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2012;743(1-2):25-35. Go to original source...
  47. Hakem R. DNA-damage repair; the good, the bad, and the ugly. EMBO J 2008;27(4):589-605. Go to original source... Go to PubMed...
  48. Yang S, Chintapalli J, Sodagum L, Baskin S, Malhotra A, Reiss K, Meggs LG. Activated IGF-1R inhibits hyperglycemia-induced DNA damage and promotes DNA repair by homologous recombination. Am J Physiol Renal Physiol 2005;289(5):F1144-52. Go to original source... Go to PubMed...
  49. Greinert R, Volkmer B, Henning S, Breitbart EW, Greulich KO, Cardoso MC, Rapp A. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages. Nucleic Acids Res 2012;40(20):10263-73. Go to original source... Go to PubMed...
  50. Rossner P, Jr., Rossnerova A, Spatova M, Beskid O, Uhlirova K, Libalova H, Solansky I, Topinka J, Sram RJ. Analysis of biomarkers in a Czech population exposed to heavy air pollution. Part II: chromosomal aberrations and oxidative stress. Mutagenesis 2013;28(1):97-106. Go to original source... Go to PubMed...