Biomedical papers, 2016 (vol. 160), issue 4

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016, 160(4):503-511 | 10.5507/bp.2016.050

McRAPD unlike MALDI-TOF MS is a suitable candidate for routine discrimination of new Haemophilus influenzae strain acquisition in chronic obstructive pulmonary disease (COPD) and cystic fibrosis

Vladislav Raclavskya,b, Nikola Stromerovac, Dana Safarovad, Jan Bardonc, Jaromir Zatloukale, Martin Zapalkaf, Petr Jakubece, Lucie Navratilovaa, Radko Novotnya
a Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
b Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
c State Veterinary Institute Olomouc, Czech Republic
d Department of Cell Biology and Genetics, Faculty of Science, Palacky University Olomouc, Czech Republic
e Department of Respiratory Medicine, University Hospital Olomouc, Czech Republic
f Department of Pediatrics, University Hospital Olomouc, Czech Republic

Background and Aims: Haemophilus influenzae new strain acquisition has been demonstrated to increase the relative risk of acute exacerbation fourfold in contrast to colonisation or chronic infection by the same strain in chronic obstructive pulmonary disease (COPD). Unfortunately, molecular typing techniques are not suitable for routine use due to cost, labour-intensity and need for special expertise. We tested two techniques potentially useful for routine typing, namely the newly available MALDI-TOF MS and the modified McRAPD compared to MLST as the gold standard.

Methods: In 10 patients (10.8%) suffering from COPD or cystic fibrosis, H. influenzae isolates were recovered repeatedly at different timepoints from the same patient during the study period. This allowed for thirteen pairwise comparisons of typing results in isolates recovered consecutively from the same patient to test the ability of the techniques to uncover new strain acquisition.

Results: MLST detected 9 cases of new strain acquisition among the 13 pairwise comparisons. However, MALDI-TOF MS reported all 13 pairs as different and thus new. In contrast, McRAPD was able to differentiate all the new strain acquisitions from pre-existing ones, both by visual inspection of melting profiles and by Relative Significant Difference values.

Conclusions: Unlike MALDI-TOF MS, McRAPD appears to be a suitable candidate for routine discrimination of new strain acquisitions because of its accuracy and, rapid, easy and economic performance.

Keywords: Haemophilus influenzae, chronic obstructive pulmonary disease, cystic fibrosis, MALDI-TOF MS typing, McRAPD typing, high resolution melting analysis

Received: January 22, 2016; Accepted: September 21, 2016; Prepublished online: October 6, 2016; Published: December 12, 2016


Attachments:

Download fileBiomed160-4-Raclavsky-Supp-data-Table-1.pdf

File size: 767.63 kB

References

  1. Sethi S, Evans N, Grant BJB, Murphy TF. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med 2002;347:465-71. doi:10.1056/NEJMoa012561. Go to original source... Go to PubMed...
  2. Sethi S, Wrona C, Grant BJB, Murphy TF. Strain-specific Immune Response to Haemophilus influenzae in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2004;169:448-53. doi:10.1164/rccm.200308-1181OC. Go to original source... Go to PubMed...
  3. Murphy TF, Brauer AL, Sethi S, Kilian M, Cai X, Lesse AJ. Haemophilus haemolyticus: A Human Respiratory Tract Commensal to Be Distinguished from Haemophilus influenzae. J Infect Dis 2007;195:81-9. doi:10.1086/509824. Go to original source... Go to PubMed...
  4. Finney LJ, Ritchie A, Pollard E, Johnston SL, Mallia P. Lower airway colonization and inflammatory response in COPD: a focus on Haemophilus influenzae. Int J Chron Obstruct Pulmon Dis 2014;9:1119-32. doi:10.2147/COPD.S54477. Go to original source... Go to PubMed...
  5. Plachy R, Hamal P, Raclavsky V. McRAPD as a new approach to rapid and accurate identification of pathogenic yeasts. J Microbiol Methods 2005;60:107-13. doi:S0167-7012(04)00251-9 [pii]\\r10.1016/j.mimet.2004.09.003 [doi]. Go to original source... Go to PubMed...
  6. Meats E, Feil EJ, Stringer S, Cody AJ, Goldstein R, Kroll JS, Popovic T, Spratt BG. Characterization of Encapsulated and Noncapsulated Haemophilus influenzae and Determination of Phylogenetic Relationships by Multilocus Sequence Typing. J Clin Microbiol 2003;41:1623-36. doi:10.1128/JCM.41.4.1623-1636.2003. Go to original source... Go to PubMed...
  7. Jolley KA, Maiden MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010;11:595. doi:10.1186/1471-2105-11-595. Go to original source... Go to PubMed...
  8. Mori E, Lio P, Daly S, Damiani G, Perito B, Fani R. Molecular nature of RAPD markers from Haemophilus influenzae Rd genome. Res Microbiol 1999;150:83-93. Go to original source... Go to PubMed...
  9. Benter T, Papadopoulos S, Pape M, Manns M, Poliwoda H. Optimization and reproducibility of random amplified polymorphic DNA in human. Anal Biochem 1995;230:92-100. Go to original source... Go to PubMed...
  10. Zhu B, Xiao D, Zhang H, Zhang Y, Gao Y, Xu L, Lv J, Wang Y, Zhang J, Shao Z. MALDI-TOF MS distinctly differentiates nontypable Haemophilus influenzae from Haemophilus haemolyticus. PLoS One 2013;8:e56139. Go to original source... Go to PubMed...
  11. Jadhav S, Gulati V, Fox EM, Karpe A, Beale DJ, Sevior D, Bhave M, Palombo EA. Rapid identification and source-tracking of Listeria monocytogenes using MALDI-TOF mass spectrometry. Int J Food Microbiol 2015;202:1-9. doi:10.1016/j.ijfoodmicro.2015.01.023. Go to original source... Go to PubMed...
  12. Khennouchi NC el H, Loucif L, Boutefnouchet N, Allag H, Rolain J-M. MALDI-TOF MS as a Tool To Detect a Nosocomial Outbreak of Extended-Spectrum-β-Lactamase- and ArmA Methyltransferase-Producing Enterobacter cloacae Clinical Isolates in Algeria. Antimicrob Agents Chemother 2015;59:6477-83. doi:10.1128/AAC.00615-15. Go to original source... Go to PubMed...
  13. Carannante A, De Carolis E, Vacca P, Vella A, Vocale C, De Francesco MA, Cusini M, Del Re S, Dal Conte I, Cristaudo A, Ober P, Sanguinetti M, Stefanelli P. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for identification and clustering of Neisseria gonorrhoeae. BMC Microbiol 2015;15:142. doi:10.1186/s12866-015-0480-y. Go to original source... Go to PubMed...
  14. Spinali S, van Belkum A, Goering R V, Girard V, Welker M, Van Nuenen M, Pincus DH, Arsac M, Durand G. Microbial typing by matrix-assisted laser desorption ionization-time of flight mass spectrometry: do we need guidance for data interpretation? J Clin Microbiol 2015;53:760-5. doi:10.1128/JCM.01635-14. Go to original source... Go to PubMed...
  15. Rim JH, Lee Y, Hong SK, Park Y, Kim M, D'Souza R, Park ES, Yong D, Lee K. Insufficient Discriminatory Power of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry Dendrograms to Determine the Clonality of Multi-Drug-Resistant Acinetobacter baumannii Isolates from an Intensive Care Unit. Biomed Res Int 2015;2015:535027. doi:10.1155/2015/535027. Go to original source... Go to PubMed...
  16. Koláčková I, Štromerová N, Bardoň J, Pudová V, Karpíšková R. Potential use of mass spectrometry for subtyping of Campylobacter. Klin Mikrobiol a Infekcní Lékarství 2015;21:68-73. Go to PubMed...
  17. Cools P, Ho E, Vranckx K, Schelstraete P, Wurth B, Franckx H, Ieven G, Van Simaey L, Van Daele S, Verhulst S, De Baets F, Vaneechoutte M. Epidemic Achromobacter xylosoxidans strain among Belgian cystic fibrosis patients and review of literature. BMC Microbiol 2016;16:122. doi:10.1186/s12866-016-0736-1. Go to original source... Go to PubMed...
  18. Dhooge I, Vaneechoutte M, Claeys G, Verschraegen G, Van Cauwenberge P. Turnover of Haemophilus influenzae isolates in otitis-prone children. Int J Pediatr Otorhinolaryngol 2000;54:7-12. Go to original source... Go to PubMed...
  19. Trtkova J, Pavlicek P, Ruskova L, Hamal P, Koukalova D, Raclavsky V. Performance of optimized McRAPD in identification of 9 yeast species frequently isolated from patient samples: potential for automation. BMC Microbiol 2009;9:234. Go to original source... Go to PubMed...
  20. Tulsiani SM, Craig SB, Graham GC, Cobbold RC, Dohnt MF, Burns M-A, Leung LK, Field HE, Smythe LD. High-resolution melt-curve analysis of random-amplified-polymorphic-DNA markers, for the characterisation of pathogenic Leptospira. Ann Trop Med Parasitol 2010;104:151-61. doi:10.1179/136485910X12607012374037. Go to original source... Go to PubMed...
  21. Deschaght P, Van Simaey L, Decat E, Van Mechelen E, Brisse S, Vaneechoutte M. Rapid genotyping of Achromobacter xylosoxidans, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia isolates using melting curve analysis of RAPD-generated DNA fragments (McRAPD). Res Microbiol 2011;162:386-92. Go to original source... Go to PubMed...
  22. Hamal P, Hanzen J, Horn F, Trtkova J, Ruskova L, Vecerova R, Ruzicka F, Vollekova A, Raclavsky V. Usefulness of McRAPD for typing and importance of biofilm production in a case of nosocomial ventriculoperitoneal shunt infection caused by Candida lusitaniae. Folia Microbiol (Praha) 2011;56:407-14.Supplemental Material: Go to original source... Go to PubMed...