Biomedical papers, 2016 (vol. 160), issue 1

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016, 160(1):1-10 | 10.5507/bp.2016.003

HMGB1, S100 proteins and other RAGE ligands in cancer - markers, mediators and putative therapeutic targets

Petra Tesarovaa, Marta Kalousovab, Tomas Zimab, Vladimir Tesarc
a Department of Oncology, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
b Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
c Department of Nephrology, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic

Background and Aims: Activation of RAGE due to its increased expression in cancer cells or its stimulation by multiple ligands (AGEs, HMGB1, S100 proteins, etc.) may contribute to the proliferation, invasiveness of tumor cells and formation of distant metastases and also to the resistance of cancer to treatment. RAGE ligands could thus become both useful markers of disease severity and its outcome and, a potential therapeutic target.

Conclusions: Better understanding of the role of RAGE activation in different types of cancer may help to define the role of ligand/RAGE antagonists as promising cancer treatment.

Keywords: RAGE, HMGB1, S100 proteins, advanced glycation end products, cancer, metastasis

Received: August 29, 2015; Accepted: January 22, 2016; Prepublished online: February 3, 2016; Published: March 30, 2016


References

  1. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 2010;28:367-88. Go to original source... Go to PubMed...
  2. Fritz G. RAGE: a single receptor fits multiple ligands. Cell 2011;36:625-32.
  3. Lin L. RAGE on the Toll road? Cell Mol Immunol 2006;3:351-6. Go to PubMed...
  4. Ibrahim ZA, Armour CL, Phipps S, Sukkar MB. RAGE and TLRs: relatives, friends or neighbours? Mol Immunol 2013;56:739-44. Go to original source... Go to PubMed...
  5. Schmidt AM, Stern DM. Receptor for age (RAGE) is a gene within the major histocompatibility class III region: implications for host response mechanisms in homeostasis and chronic disease. Front Biosci 2001;6:D1151-60. Go to original source... Go to PubMed...
  6. Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, Rutledge R, Lin B, Amoscato AA, Zeh HJ, Lotze MT. RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 2009;17;7:17.doi: 10.1186/1479-5876-7-17. Go to original source...
  7. Wautier JL, Zoukourian C, Chappey O, Wautier MP, Guillausseau PJ, Cao R, Hori O, Stern D, Schmidt AM. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest 1996;97:238-43. Go to original source... Go to PubMed...
  8. Sterenczak KA, Nolte I, Murua Escobar H. RAGE splicing variants in mammals. Methods Mol Biol 2013;963:265-76. Go to original source... Go to PubMed...
  9. Sorci G, Riuzzi F, Giambanco I, Donato R. RAGE in tissue homeostasis, repair and regeneration. Biochim Biophys Acta 2013;1833:101-9.
  10. Raucci A, Cugusi S, Antonelli A, Barabino SM, Monti L, Bierhaus A, Reiss K, Saftig P, Bianchi ME. A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J 2008;22:3716-27. Go to original source... Go to PubMed...
  11. Lotze MT, DeMarco RA. Dealing with death: HMGB1 as a novel target for cancer therapy. Curr Opin Investig Drugs 2003;4:1405-9. Go to PubMed...
  12. Mizumoto S, Sugahara K. Glycosaminoglycans are functional ligands for receptor for advanced glycation end-products in tumors. FEBS J 2013;280:2462-70. Go to original source... Go to PubMed...
  13. Rai V, Touré F, Chitayat S, Pei R, Song F, Li Q, Zhang J, Rosario R, Ramasamy R, Chazin WJ, Schmidt AM. Lysophosphatidic acid targets vascular and oncogenic pathways via RAGE signaling. J Exp Med 2012;209:2339-50. Go to original source... Go to PubMed...
  14. Kalousova M, Zima T, Tesar V, Dusilova-Sulkova S, Skrha J. Advanced glycoxidation end products in chronic diseases - clinical chemismy and genetic background. Mutat Res 2005;579:37-46. Go to original source... Go to PubMed...
  15. Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol Metab 2013;3:94-108. Go to original source... Go to PubMed...
  16. Ellerman JE, Brown CK, de Vera M, Zeh HJ, Billiar T, Rubartelli A, Lotze MT. Masquerader: high mobility group box-1 and cancer. Clin Cancer Res 2007;13:2836-48. Go to original source... Go to PubMed...
  17. Todorova J, Pasheva E. High mobility group B1 protein interacts with its receptor RAGE in tumor cells but not in normal tissues. Oncol Lett 2012;3:214-8. Go to PubMed...
  18. Kang R, Livesey KM, Zeh HJ, Zeh HJ, Loze MT, Tang D. Metabolic regulation by HMGB1-mediated autophagy and mitophagy. Autophagy 2011;7:1256-8. Go to original source... Go to PubMed...
  19. Van Beijnum JR, Buurman WA, Griffioen AW. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 2008;11:91-9. Go to original source... Go to PubMed...
  20. Nogueira-Machado JA, Volpe CM, Veloso CA, Chaves MM. HMGB1, TLR and RAGE: a functional tripod that lead to diabetic inflammation. Expert Opin Ther Targets 2011;15:1023-35. Go to original source... Go to PubMed...
  21. Marenholz I, Heizmann CW, Fritz G. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 2004; 322:1111-22. Go to original source... Go to PubMed...
  22. Donato R, Cannon BR, Sorci G, Zeh HJ, Loze MT, Tang D. Functions of S100 proteins. Curr Mol Med 2013;13:24-57. Go to original source... Go to PubMed...
  23. Ishibashi Y, Matsui T, Takeuchi M, Yamagishi S. Metformin inhibits advanced glycation end products (AGEs)- induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm Metab Res 2013;45:387-90. Go to PubMed...
  24. Grote VA, Nieters A, Kaaks R, Tjønneland A, Roswall N, Overvad K, Nielsen MR, Clavel-Chapelon F, Boutron-Ruault MC, Racine A, Teucher B, Lukanova A, Boeing H, Drogan D, Trichopoulou A, Trichopoulos D, Lagiou P, Palli D, Sieri S, Tumino R, Vineis P, Mattiello A, Argüelles Suárez MV, Duell EJ, Sánchez MJ, Dorronsoro M, Huerta Castaño JM, Barricarte A, Jeurnink SM, Peeters PH, Sund M, Ye W, Regner S, Lindkvist B, Khaw KT, Wareham N, Allen NE, Crowe FL, Fedirko V, Jenab M, Romaguera D, Siddiq A, Bueno-de-Mesquita HB, Rohrmann S. The associations of advanced glycation end products and its soluble receptor with pancreatic cancer risk: a case-control study within the prospective EPIC cohort. Cancer Epidemiol Biomarkers Prev 2012;21:619-28. Go to original source... Go to PubMed...
  25. Moy KA, Jiao L, Freedman ND, Weinstein SJ, Sinha R, Virtamo J, Albanes D, Stolzenberg-Solomon RZ. Soluble receptor for advanced glycation end products and risk of liver cancer. Hepatology 2013;57:2338-45. Go to original source... Go to PubMed...
  26. Jiao L, Taylor PR, Weinstein SJ, Graubard BI, Virtamo J, Albanes D, Stolzenber-Solomon RZ. Advanced glycation end products, soluble receptor for advanced glycation end products, and risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 2011;20:1430-8. Go to original source... Go to PubMed...
  27. Tesarova P, Kalousova M, Trnkova B, Soukupova J, Argalasova S, Mestek O, Petruzelka L, Zima T. Carbonyl and oxidative stress in patients with breast cancer - is there a relation to the stage of the disease? Neoplasma 2007;54:219-24. Go to PubMed...
  28. Tesarova P, Kalousova M, Jachymova M, Mestek O, Petruzelka L, Zima T. Receptor for advanced glycation end products (RAGE) - soluble form (sRAGE) and gene polymorphisms in patients with breast cancer. Cancer Invest 2007;25:720-5. Go to original source... Go to PubMed...
  29. Thornalley PJ. Protecting the genome: defence against nucleotide glycation and emerging role of glyoxalase I overexpression in multidrug resistance in cancer chemotherapy. Biochem Soc Trans 2003;31:1372-7. Go to original source... Go to PubMed...
  30. Thornalley,PJ, Rabbani N. Highlights and hotspots of protein glycation in end-stage renal disease. Semin Dial 2009;22:400-4. Go to original source... Go to PubMed...
  31. Thornalley PJ, Rabbani N. Glyoxalase in tumourigenesis and multidrug resistance. Semin Cell Dev Biol 2011;22:318-25. Go to original source... Go to PubMed...
  32. Rulli A, Antognelli C, Prezzi E, Baldracchini F, Piva F, Giovannini E, Talesa V. A possible regulatory role of 17beta-estradiol and tamoxifen on glyoxalase I and glyoxalase II genes expression in MCF7 and BT20 human breast cancer cells. Breast Cancer Res Treat 2006;96:187-96. Go to original source... Go to PubMed...
  33. Fonseca-Sánchez MA, Rodríguez Cuevas S, Mendoza-Hernández G, Bautista-Piña V, Arechaga Ocampo E, Hidalgo Miranda A, Quintanar Jurado V, Marchat LA, Alvarez-Sánchez E, Pérez Plasencia C, López-Camarillo C. Breast cancer proteomics reveals a positive correlation between glyoxalase 1 expression and high tumor grade. Int J Oncol 2012;41:670-80. Go to PubMed...
  34. Santel T, Pflug G, Hemdan NY, Schafer A, Hollenbach M, Buchold M, Hintersdorf A, Lindner I, Otto A, Bigl M, Oerlecke I, Hutschenreuther A, Sack U, Huse K, Groth M, Birkemeyer C, Schellenberger W, Gebhardt R, Platzer M, Weiss T,Vijayalakshmi MA, Kruger M, Birkenmeier G. Curcumin inhibits glyoxalase 1: a possible link to its anti-inflammatory and anti-tumor activity. PLoS One 2008;3:e3508,doi: 10.1371/journal.pone.0003508. Go to original source... Go to PubMed...
  35. Davies GF, Juurlink BH, Harkness TA. Troglitazone reverses the multiple drug resistance phenotype in cancer cells. Drug Des Devel Ther 2009;3:79-88. Go to PubMed...
  36. Germanova A, Germanova A, Tesarova P, Jachymova M, Zvara K, Zima T, Kalousova M. Glyoxylase I Glu111Ala polymorphism in patients with breast cancer. Cancer Invest 2009;7: 655-60. Go to original source... Go to PubMed...
  37. Antognelli C, Del Buono C, Ludovini V, Gori S, Talesa VN, Crino L, Barberini F, Rulli A. CYP17, GSTP1, PON1 and GLO1 gen polymorphisms as risk factors for breast cancer: an Italian case-control study. BMC Cancer 2009;9:115,doi:10.1186/1471-2407-9-115. Go to original source... Go to PubMed...
  38. Naidu R, Har YC, Taib NA. Glyoxylase I Glu111Ala gene polymorphism: no association with breast cancer risk but correlated with absence of progesterone receptor. Pathol Int 2010;60:614-20. Go to original source... Go to PubMed...
  39. Krechler T, Jachymova M, Mestek O, Zak A, Zima T, Kalousova M. Soluble receptor for advanced glycation end-products (sRAGE) and polymorphisms of RAGE and glyoxalase I genes in patients with pancreas cancer. Clin Biochem 2010;43:882-6. Go to original source... Go to PubMed...
  40. Chocholaty M, Jachymova M, Schmidt M, Havlova K, Krepelova A, Zima T, Babjuk M, Kalousova M. Polymorphisms of the receptor for advanced glycation end-products and glyoxalase I in patients with renal cancer. Tumour Biol 2015;36:2121-6. Go to original source... Go to PubMed...
  41. Luo Y, ChiharaY, Fujimoto K, Sasahira T, Kuwada M, Fujiwara R, Fujii K, Ohmori H, Kuniyasu H. High mobility group box 1 released from necrotic cells enhances regrowth and metastasis of cancer cells that survived chemotherapy. Eur. J. Cancer 2013;49:741-51.
  42. Kang R, Tang D, Schapiro NE. The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene 2014;33:567-77. Go to original source... Go to PubMed...
  43. Wang C, Fei G, Liu Z, Li Q, Xu Z, Ren T. HMGB1 was a pivotal synergistic effector for CpG oligonucleotide to enhance the progression of human lung cancer cells. Cancer Biol 2012;13:727-36. Go to original source...
  44. Kostova N, Zlateva S, Ugrinova I, Pasheva E. The expression of HMGB1 protein and its receptor RAGE in human malignant tumors. Mol Cell Biochem 2010;337:251-8. Go to original source... Go to PubMed...
  45. Bassi R, Giussani P, Anelli V, Colleoni T, Pedrazzi M, Patrone M, Viani P, Sparatore B, Melloni E, Riboni L. HMGB1 as an autocrine stimulus in human T98G glioblastoma cells: role in cell growth and migration. J Neurooncol 2008;87:23-33. Go to original source... Go to PubMed...
  46. Kuniyasu H, Chihara Y, Kondo H, Ohmori H, Ukai R. Amphoterin induction in prostatic stromal cells by androgen deprivation is associated with metastatic prostate cancer. Oncol Rep 2003;10:1863-8. Go to original source... Go to PubMed...
  47. Jia L, Clear A, Liu FT, Matthews J, Uddin N, McCarthy A, Hoxha E, Durance C, Iqbal S, Gribben JG. Extracellular HMGB1 promotes differentiation of nurse-like cells in chronic lymphocytic leukemia. Blood 2014;123:1709-19. Go to original source... Go to PubMed...
  48. Stoetzer OJ, Ferschning DM, Salat C, Steinkohl O, Gabka CJ, Hamann U, Braun M, Feller AM, Heinemann V, Siegele B, Nagel D, Holdenrieder S. Circulating immunogenic cell death biomarkers HMGB1 and RAGE in breast cancer patients during neoadjuvant chemotherapy. Tumour Biol 2013;34:81-90. Go to original source... Go to PubMed...
  49. Kohles N, Nagel D, Jungst D, Stieber P, Holdenrieder S. Predictive value of immunogenic cell death biomarkers HMGB1, sRAGE and Dnase in liver cancer patients receiving transarterial chemoembolization therapy. Tumour Biol 2012;33:2401-9. Go to original source... Go to PubMed...
  50. Musumeci D, Roviello GN, Montesarchio D. An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol Ther 2014;141:347-57. Go to original source... Go to PubMed...
  51. Chen H, Xu C, Jin Q, Liu Z. S100 protein family in human cancer. Am J Cancer Res 2014;4:89-115. Go to PubMed...
  52. Hsieh HL, Schafer BW, Sasaki N, Heizmann CW. Expression analysis of S100 proteins and RAGE in human tumors using tissue microarrays. Biochem Biophys Res Commun 2003;307:375-81. Go to original source... Go to PubMed...
  53. Hernandez JL, Padilla L, Dakhel S, Coll T, Hervas R, Adan J, Masa M, Mitjans F, Martinez JM, Coma S, Rodriguez L, Noe V, Ciudad CJ, Blasco F, Messeguer R. Therapeutic targeting of tumor growth and angiogenesis with a novel anti-S100A4 monoclonal antibody. PLoS One 2013,8: e72480,doi: 10.1371/ journal.pone.0072480. Go to original source... Go to PubMed...
  54. Dahlmann M, Okhrimenko A, Marcinkowski P, Osterland M, Herrmann P, Smith J, Heizmann CW, Schlag PM, Stein U. RAGE mediates S100A4-induced cell motility via MAPK/ERK and hypoxia signaling and is a prognostic biomarker for human colorectal cancer metastasis. Oncotarget 2014;30:3220-3. Go to original source... Go to PubMed...
  55. Siddique HR, Adhami VM, Parray A, Johnson JJ, Sidiqui IA, Shekhani MT, Murtaza I, Ambartsumian N, Konety BR, Mukhtar H, Saleem M. The S100A4 oncoprotein promotes prostate tumorigenesis in a transgenic mouse model: regulating NFκB through the RAGE receptor. Genes Cancer 2013;4:224-34. Go to original source... Go to PubMed...
  56. Haase-Kohn C, Wolf S, Herwig N, Mosch B, Pietzsch J. Metastatic potential of B16-F10 melanoma cells is enhanced by extracellular S100A4 derived from RAW264.7 macrophages. Biochem Biophys Res Commun 2014;446:143-8. Go to original source... Go to PubMed...
  57. Gibadulinova A, Tothova V, Pastorek J, Pastorekova S. Transcriptional regulation and functional implication of S100P in cancer. Amino Acids 2011;41:885-92. Go to original source... Go to PubMed...
  58. Arumugam T, Simeone DM, Schmidt AM, Logsdon CD. S100P stimulates cell proliferation and survival via receptor for activated glycation end products (RAGE). J Biol Chem 2004;279:5059-65. Go to original source... Go to PubMed...
  59. Arumugam T, Ramachandran V, Gomez SB, Schmidt AM, Logsdon CD. S100P-derived RAGE antagonistic peptide reduces tumor growth and metastasis. Clin Cancer Res 2012;18: 4356-64. Go to original source... Go to PubMed...
  60. Onyeagucha BC, Mercado-Pimentel ME, Hutchison J, Flemington EK, Nelson MA. S100P/RAGE signaling regulates microRNA-155 expression via AP-1 activation in colon cancer. Exp Cell Res 2013;319:2081-90. Go to original source... Go to PubMed...
  61. Ji YF, Huang H, Jiang F. S100 family signaling network and related proteins in pancreatic cancer. Int J Mol Med 2014;33:769-76. Go to PubMed...
  62. Shubbar E, Vegfors J, Carlstrom M, Petersson S, Enerback C. Psoriasin (S100A7) increases the expression of ROS and VEGF and acts through RAGE to promote endothelial cell proliferation. Breast Cancer Res Treat 2012;134:71-80. Go to original source... Go to PubMed...
  63. Petersson S, Shubbar E, Yhr M, Kovacs A, Enerback C. Loss of ICAM-1 signaling induces psoriasin (S100A7) and MUC1 in mammary epithelial cells. Breast Cancer Res Treat 2011;125:13-25. Go to original source... Go to PubMed...
  64. Nasser NW, Qamri Z, Deol YS, Ravi J, Powell CA, Trikha P, Schwendener RA, Bai XF, Shilo K, Zou X, Leone G, Wolf R, Yuspa SH, Ganju RK. S100A7 enhances mammary tumorigenesis through upregulation of inflammatory pathways. Cancer Res 2012;72:604-15. Go to original source... Go to PubMed...
  65. Yin C, Li H, Zhang B, Liu Y. RAGE-binding S100A8/A9 promotes the migration and invasion of human breast cancer cells through actin polymerization and epithelial-mesenchymal transition. Breast Cancer Res Treat 2013;142:297-309. Go to original source... Go to PubMed...
  66. Hermani A, Hess J, De Servi B, Medunjanin S, Grobholz R, Trojan L, Angel P, Mayer D. Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res 2006;11:5146-52. Go to original source... Go to PubMed...
  67. Hibino T, Sakaguchi M Miyamoto S, Yamamoto M, Motoyama A, Hosoi J, Shimokata T, Ito T, Tsuboi R, Huh NH.et al.: S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis. Cancer Res 2013;73:172-83. Go to original source... Go to PubMed...
  68. Yang M, Zeng P, Kang R, Yu Y, Yang L, Tang D, Cao L. S100A8 contributes to drug resistance by promoting authophagy in leukemia cells. PLoS One 2014;9:e97242,doi: 10.1371/journal.pone.0097242. Go to original source... Go to PubMed...
  69. Wang H, Zhang L, Zhang IY, Chen X, Da Fonseca A, Wu S, Ren H, Badie S, Sadeghi S, Ouyang M, Warden CD, Badie B. S100B promotes glioma growth through chemoattraction of myeloid-derived macrophages. Clin Cancer Res 2013;19:3764-75. Go to original source... Go to PubMed...
  70. Leclerc E, Heizmann CW, Vetter SW. RAGE and S100 protein transcription levels are highly variable in human melanoma tumors and cells. Gen Physiol Biophys 2009;28:F65-F75. Go to PubMed...
  71. Eckel-Passow JE, Serie DJ, Bot BM, Joseph RW, Hart SN, Cheville JC, Parker AS. Somatic expression of ENRAGE is associated with obesity status among patients with clear cell renal cell carcinoma. Carcinogenesis 2014;35:822-27. Go to original source... Go to PubMed...
  72. Ishibashi Y, Yamagishi S, Matsui T, Ohta K, Tanoue R, Takeuchi M, Ueda S, Nakamura K, Okuda S. Pravastatin inhibits advanced glycation end products (AGEs)-induced proximal tubular cell apoptosis and injury by reducing receptor for AGEs (RAGE) level. Metabolism 2012;61:1067-72. Go to original source... Go to PubMed...
  73. Matsui T, Yamagishi S, Takeuchi M, Ueda S, Fukami K, Okuda S. Irbesartan inhibits advanced glycation end product (AGE)-induced proximal tubular cell injury in vitro by suppressing receptor for AGEs (RAGE) expression. Pharmacol Res 2010;61:34-9. Go to original source... Go to PubMed...
  74. Yamagishi S, Nakamura K, Matsui T. Regulation of advanced glycation end product (AGE)-receptor (RAGE) system by PPAR-gamma agonists and its implication in cardiovascular disease. Pharmacol Res 2009;60:174-8. Go to original source... Go to PubMed...
  75. He X, Esteva FJ, Ensor J, Hortobagyi GN, Lee MH, Yeung SC. Metformin and thiazolidinediones are associated with improved breast cancer-specific survival of diabetic women with HER2+ breast cancer. Ann Oncol 2012;23:1771-80. Go to original source... Go to PubMed...
  76. Arumugam T, Ramachandran V, Sun D, Peng Z, Pal A, Maxwell DS, Bornmann WG, Logsdon CD. Designing and developing S100P inhibitor 5-methyl cromolyn for pancreatic cancer therapy. Mol Cancer Ther 2013;12:654-62. Go to original source... Go to PubMed...
  77. Rao NV, Argyle B, Xu X, Reynolds PR, Walenga JM, Prechel M, Prestwich GD, MacArthur RB, Walters BB, Hoidal JR, Kennedy TP. Low anticoagulant heparin targets multiple sites of inflammation, suppresses heparin-induced thrombocytopenia, and inhibits interaction of RAGE with its ligands. Am J Physiol Cell Physiol 2010;299:C97-C110. Go to original source... Go to PubMed...
  78. Mizumoto S, Takahashi J, Sugahara K. Receptor for advanced glycation end products (RAGE) functions as receptor for specific sulfated glycosaminoglycans, and anti-RAGE antibody or sulfated glycosaminoglycans delivered in vivo inhibit pulmonary metastasis of tumor cells. J Biol Chem 2012;287:18985-94. Go to original source... Go to PubMed...
  79. Yamagishi S, Matsui T. Soluble form of a receptor for advanced glycation endproducts as a biomarker. Front Biosci 2010;2:1184-95. Go to original source...
  80. Nogueira-Machado JA, de Oliveira Volpe CM. HMGB-1 as a target for inflammation controlling. Recent Pat Endocr Metab Immune Drug Discov 2012;6:201-09. Go to original source... Go to PubMed...
  81. Radia AM, Yaser AM, Ma X, Zhang J, Yang C, Dong Q, Rong P, Ye B, Liu S, Wang W. Specific siRNA targeting receptor for advanced glycation end products (RAGE) decreases proliferation in human breast cancer cell lines. Int J Mol Sci 2013;14:7959-78. Go to original source... Go to PubMed...