Biomedical papers, 2009 (vol. 153), issue 4

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2009, 153(4):243-250 | 10.5507/bp.2009.042

MAGNETIC DRUG DELIVERY AND TARGETING: PRINCIPLES AND APPLICATIONS

Melania Babincova, Peter Babinec
Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovakia

Background: Nanomaterials are at the leading edge of the rapidly developing field of nanotechnology. Magnetic nanoparticles for cancer therapy and diagnosis have been developed on the basis of their unique physico-chemical properties not present in other materials. Their versatility is widely exploited in such diverse techniques as cell and macromolecule separation and purification, immunoassays, targeted drug delivery, controlled material release, electromagnetic hyperthermia, gene therapy, or magnetic resonance imaging. In this review we concentrate on the physical principles of magnetic drug targeting and biomedical applications of this technique.

Methods and results: We examined several databases, PubMed, ISI Web of Knowledge, and Scopus, for the period 1985-2009, with specific attention to studies that used targeting of magnetic nanoparticles especially in the therapy and diagnostics of tumors. We have also presented several of our own results on theoretical simulations of magnetic particle motion in external magnetic field.

Conclusions: We found growing number of published papers in this field of nanomedicine, showing the almost unlimited potential of magnetic nanoparticles in the field of experimental and clinical oncology.

Keywords: Magnetic nanoparticles, Cancer therapy, Drug targeting, Gene Therapy, Controlled drug release

Received: September 30, 2009; Accepted: November 27, 2009


References

  1. Laufberger V. Sur la cristallisation de la ferritine. Bull Soc Chim Biol 1937;19:1575.
  2. Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J. Body iron metabolism and pathophysiology of iron overload. Int J Hematol 2008 ;88(1):715. Go to original source... Go to PubMed...
  3. Pankhurst Q, Hautot D, Khan N, Dobson J. Increased levels of magnetic iron compounds in Alzheimer's disease. J Alzheimer's Dis 2008 ;13(1):4952.
  4. Babincová M, Babinec P. Dopamine mediated iron release from ferritin is enhanced at higher temperatures: Possible implications for fever-induced Parkinson's disease. J Magn Magn Mater 2005;293(1):3414. Go to original source...
  5. Kronick P, Gilpin RW. Use of superparamagnetic particles for isolation of cells. J Biochem Biophys Methods 1986;12(12):7380. Go to original source... Go to PubMed...
  6. Simsek E, Akif Kilic M. Magic ferritin: A novel chemotherapeutic encapsulation bullet. J Magn Magn Mater 2005;293(1):50913. Go to original source...
  7. Gilad AA, Winnard Jr. PT, van Zijl PCM, Bulte JWM. Developing MR reporter genes: Promises and pitfalls. NMR Biomed 2007;20(3):27590. Go to original source... Go to PubMed...
  8. Babincová M, Leszczynska D, Sourivong P, Babinec P. Selective treatment of neoplastic cells using ferritin-mediated electromagnetic hyperthermia. Med Hypotheses 2000;54(2):1779. Go to original source... Go to PubMed...
  9. Lee S, Lee H, Park J, Choi H, Han K, Seo H, et al. A novel approach to ultrasensitive diagnosis using supramolecular protein nanoparticles. FASEB Journal 2007;21(7):132434. Go to original source...
  10. Gider S, Awschalom DD, Douglas T, Mann S, Chaparala M. Classical and quantum magnetic phenomena in natural and artificial ferritin proteins. Science 1995; 268(5207):7780. Go to original source... Go to PubMed...
  11. Morrish AH. Physical Principles of Magnetism. New York, IEEE Press;2001. Go to original source...
  12. Jiles D. Introduction to Magnetism and Magnetic Materials, London, Chapman and. Hall;1991. Go to original source...
  13. Schwertmann U, Cornell RM. Iron oxides in the laboratory: preparation and characterization. Weinheim, VCH;1991.
  14. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26(18):39954021. Go to original source... Go to PubMed...
  15. Berry CC, Curtis ASG. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D 2003;36(13):R198 206. Go to original source... Go to PubMed...
  16. Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Current Drug Discovery Technologies 2009;6(1):4351. Go to original source... Go to PubMed...
  17. Kikumori T, Kobayashi T, Sawaki M, Imai T. Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticleloaded anti-HER2 immunoliposomes. Breast Cancer Res Treat 2009;113(3):43541. Go to original source... Go to PubMed...
  18. Veiseh O, Kievit FM, Gunn JW, Ratner BD, Zhang M. A ligandmediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials 2009;30(4):64957. Go to original source... Go to PubMed...
  19. Kim D, Kim K, Kim K, Lee Y. Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia. Journal of Biomedical Materials Research Part A 2009;88(1):111. Go to original source...
  20. Cheng C, Chu P, Chuang K, Roffler SR, Kao C, Tseng W. Hapten-derivatized nanoparticle targeting and imaging of gene expression by multimodality imaging systems. Cancer Gene Ther 2009;16(1):8390. Go to original source... Go to PubMed...
  21. Mohapatra S, Mallick SK, Maiti TK, Ghosh SK, Pramanik P. Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology 2007;18(38). Go to original source...
  22. Babincová M. Microwave induced leakage of magnetoliposomes. possible clinical implications. Bioelectrochem Bioenerget 1993;32(2):1879. Go to original source...
  23. Babincová M. Simple preparation and separation of magnetoliposomes. Chem Listy 1998;92(4):323.
  24. Babincová M, Machová E. Magnetoliposomes may be useful for elimination of HIV from infected individuals. Zeitschrift fur Naturforschung Section C Journal of Biosciences 1998;53(9 10):9356.
  25. Babincová M, Babinec P. Controlled drug delivery using magnetoliposomes. Cellular and Molecular Biology Letters 1997;2(1):37.
  26. Babincova M, Babinec P. Possibility of magnetic targeting of drugs using magnetoliposomes. Pharmazie 1995;50(12):8289.
  27. Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nature Reviews Cancer 2005;5(3):16171. Go to original source... Go to PubMed...
  28. Babincová M, Babinec P, Bergemann C. High-gradient magnetic capture of ferrofluids: Implications for drug targeting and tumor embolization. Zeitschrift fur Naturforschung Section C Journal of Biosciences 2001;56(910):90911.
  29. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D 2003;36(13):R16781. Go to original source... Go to PubMed...
  30. Furlani EP, Sahoo Y. Analytical model for the magnetic field and force in a magnetophoretic microsystem. J Phys D 2006;39(9):172432. Go to original source...
  31. Meeker D. software: Finite Elements Methods Magnetics, V 4.2. Available from: http://femm.foster-miller.net
  32. Krafcik A, Babincova M, Babinec P. Theoretical analysis of magnetic particle trajectory in high-current pulsed quadrupole: implications for magnetic cell separation, drug targeting, and gene therapy. Optoel. Adv. Mater. Rapid Commun 2009;3(11): 226231.
  33. Babincová M, Babinec P. Aerosolized VEGF in combination with intravenous magnetically targeted delivery of DNA-nanoparticle complex may increase efficiency of cystic fibrosis gene therapy. Med Hypotheses 2006;67(4):1002. Go to original source... Go to PubMed...
  34. Dames P, Gleich B, Flemmer A, Hajek K, Seidl N, Wiekhorst F, et al. Targeted delivery of magnetic aerosol droplets to the lung. Nature Nanotechnology 2007;2(8):4959. Go to original source... Go to PubMed...
  35. ©afařík I, ©afaříková M. Use of magnetic techniques for the isolation of cells. Journal of Chromatography B: Biomedical Sciences and Applications 1999;722(12):3353 Go to original source...
  36. ©afařík I, ©afaříková M. Magnetic nanoparticles and biosciences. Monatshefte fur Chemie 2002;133(6):73759.
  37. Widder KJ, Senyei AE, Ranney DF. In vitro release of biologically active adriamycin by magnetically responsive albumin microspheres. Cancer Res 1980;40(10):35127. Go to PubMed...
  38. Gupta PK, Hung CT. Magnetically controlled targeted microcarrier systems. Life Sci 1989;44:17586. Go to original source... Go to PubMed...
  39. Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, et al. Clinical experiences with magnetic drug targeting: A phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 1996;56(20):468693.
  40. Lübbe AS, Bergemann C, Brock J, McClure DG. Physiological aspects in magnetic drug-targeting. J Magn Magn Mater 1999;194(1):14955. Go to original source... Go to PubMed...
  41. Babincová M, Altanerová V, Lampert M, Altaner C, Machová E, © rá mka M, et al. Site-specific in vivo targeting of magnetoliposomes using externally applied magnetic field. Zeitschrift fur Naturforschung Section C Journal of Biosciences 2000;55(3 4):27881.
  42. Babincová M, Leszczynska D, Sourivong P, Babinec P, Leszczynski J. Principles of magnetodynamic chemotherapy. Med Hypotheses 2004;62(3):37580. Go to original source... Go to PubMed...
  43. Babincova M, Altanerova V, Altaner C, Bergemann C, Babinec P. In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia. IEEE Transactions on Nanobioscience 2008;7(1):159. Go to original source... Go to PubMed...
  44. Misra RDK. Magnetic nanoparticle carrier for targeted drug delivery: Perspective, outlook and design. Materials Science and Technology 2008;24(9):10119. Go to original source...
  45. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, Gansbacher B, Plank C. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 2002;9:1029. Go to original source... Go to PubMed...
  46. Mykhaylyk O, Zelphati O, Hammerschmid E, Anton M, Rosenecker J, Plank C. Recent advances in magnetofection and its potential to deliver siRNAs in vitro. Methods Mol Biol 2009;487:11146. Go to original source... Go to PubMed...
  47. Babincová M, Leszczynska D, Sourivong P, Babinec P. Picosecond laser pulses mediated drug release from magnetoliposomes. Cellular and Molecular Biology Letters 1999;4(4):62530.
  48. Babincová M, Leszczynska D, Sourivong P, Č ič manec P, Babinec P. Superparamagnetic gel as a novel material for electromagnetically induced hyperthermia. J Magn Magn Mater 2001;225(12):109 12. Go to original source...
  49. Babincová M, Č ič manec P, Altanerová V, Altaner C, Babinec P. AC-magnetic field controlled drug release from magnetoliposomes: Design of a method for site-specific chemotherapy. Bioelectrochemistry 2002;55(12):179. Go to original source... Go to PubMed...
  50. Babincová M, Altanerová V, Altaner C, Č ič manec P, Babinec P. In vivo heating of magnetic nanoparticles in alternating magnetic field. Med Phys 2004;31(8):221921. Go to original source... Go to PubMed...
  51. Babinec P, Babincová M, Sourivong P, Leszczynska D. Efficient treatment of pigmented B16 melanoma using photosensitized long-circulating magnetofullerenosomes. J Magn Magn Mater 2005;293(1):3947. Go to original source...
  52. Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P. Development of superparamagnetic nanoparticles for MRI: Effect of particle size, charge and surface nature on biodistribution. J Microencapsul 1996;13(3):24555. Go to original source... Go to PubMed...
  53. Babinec P, Babincová M. Towards multimodal nanoparticle labels for molecular imaging of biological processes. Med Hypotheses 2007;69(3):7034. Go to original source... Go to PubMed...
  54. Syková E, Jendelová P, Herynek V. MR tracking of stem cells in living recipients. Methods Mol Biol 2009;549:197215. Go to original source... Go to PubMed...